Skip to main content
Log in

Crystallization kinetics of lithium–aluminum–germanium–phosphate glass doped with MgO using a non-isothermal method

  • Original Article
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

This study examines the effect of MgO content on the crystallization behavior of lithium–aluminum–germanium–phosphate glasses using differential thermal analysis (DTA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The DTA results show that the crystallization temperature decreased with an increasing MgO content and increased with increasing heating rates. The crystalline phase is investigated with XRD to determine the presence of LiGe2(PO4)3 and LiMgPO4. The activation energy, as the kinetic parameter, is obtained using the Kissinger and Marotta methods, and the SEM results confirm the change in the Avrami index with the MgO content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Ding, J. Li, J. Li, C. An, Review-interfaces: key issue to be solved for all solid-state lithium battery technologies. J. Electrochem. Soc. 167, 070541 (2020)

    Article  Google Scholar 

  2. L. He, Q. Sun, C. Chen, J. Oh, J. Sun, M. Li, W. Tu, H. Zhou, K. Zeng, L. Lu, Failure mechanism and interface engineering for NASICON-structured all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 11, 20895–20904 (2019)

    Article  CAS  Google Scholar 

  3. H. Lim, L. Liu, H. Lee, J. Cha, D. Yoon, B. Ryu, The study on the interface characteristics of solid-stat electrolyte. J. Korean Ceram. Soc. 58, 373–377 (2021)

    Article  CAS  Google Scholar 

  4. C. Jung, H. Shim, D. Eum, S. Hong, Challenges and recent progress in LiNixCoyMn1−x−yO2 (NCM) cathodes for lithium ion batteries. J. Korean Ceram. Soc. 58, 1–27 (2021)

    Article  CAS  Google Scholar 

  5. H. Nakano, K. Dokko, J. Sugaya, T. Yasukawa, T. Matsue, K. Kanamura, All-solid-state micro lithium-ion batteries fabricated by using dry polymer electrolyte with micro-phase separation structure. Electrochem. Commun. 9, 2013–2017 (2007)

    Article  CAS  Google Scholar 

  6. F. Croce, F. Serraino Fiory, L. Persi, B. Scrosati, A high-rate, long-life, lithium nanocomposite polymer electrolyte battery. Electrochem. Solid-State Lett. 4, 121–123 (2001)

    Article  Google Scholar 

  7. K. Takada, M. Tansho, I. Yanase, T. Inada, A. Kajiyama, M. Kouguchi, S. Kondo, M. Watanabe, Lithium ion conduction in LiTi2(PO4)3. Solid State Ion. 139, 241–247 (2001)

    Article  CAS  Google Scholar 

  8. T. Abe, M. Ohtsuka, F. Sagane, Y. Iriyama, Z. Ogumi, Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte—a key to enhancing the rate capability of lithium-ion batteries. J. Electrochem. Soc. 151, 2151–2154 (2004)

    Article  Google Scholar 

  9. A. Hayashi, T. Konishi, K. Tadanaga, M. Tatsumisago, Formation of electrode–electrolyte interface by lithium insertion to SnS–P2S5 negative electrode materials in all-solid-state cells. Solid State Ion. 177, 2737–2740 (2006)

    Article  CAS  Google Scholar 

  10. X. Chen, P. Vereecken, Solid and solid-like composite electrolyte for lithium ion batteries: engineering the ion conductivity at interfaces. Adv. Mater. Interfaces 6, 1800899 (2019)

    Article  CAS  Google Scholar 

  11. K. Heo, J. Im, J. Lee, S. Kim, J. Kim, J. Lim, High-rate blended cathode with mixed morphology for all solid-state Li-ion batteries. J. Electrochem. Sci. Technol. 11, 282–290 (2020)

    Article  CAS  Google Scholar 

  12. T. Ozawa, Kinetics of non-isothermal crystallization. Polymer 12, 150–158 (1971)

    Article  CAS  Google Scholar 

  13. J. Sestak, The applicability of DTA to the study of crystallization kinetics of glasses. Phys. Chem. Glasses. 15, 137–140 (1974)

    CAS  Google Scholar 

  14. H. Yinnon, D.R. Uhlmann, Applications of thermoanalytical techniques to the study of crystallization kinetics in glass-forming liquids, part I: Theory. J. Non-cryst. Solids 54, 253–275 (1983)

    Article  CAS  Google Scholar 

  15. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957)

    Article  CAS  Google Scholar 

  16. Y. Zhang, Z. Luo, T. Liu, X. Hao, Z. Li, A. Lu, MgO-doping in the Li2O–ZnO–Al2O3–SiO2 glass–ceramics for better sealing with steel. J. Non-cryst. Solids 405, 170–175 (2014)

    Article  CAS  Google Scholar 

  17. L. Lilensten, Q. Fu, B.R. Wheaton, A.J. Credle, R.L. Stewart, J.T. Kohli, Kinetic study on lithium-aluminosilicate (LAS) glass-ceramics containing MgO and ZnO. Ceram. Int. 40, 11657–11661 (2014)

    Article  CAS  Google Scholar 

  18. H. Kim, The crystallization kinetics of CaO–MgO–Al2O3–sio2 glass system using thermal analysis. J. Korean Ceram. Soc. 29, 9–14 (1992)

    CAS  Google Scholar 

  19. J. Sestak, Use of phenomenological kinetics and the enthalpy versus temperature diagram (and its derivative-DTA) for a better understanding of transition processes in glasses. Thermochim. Acta 208(281), 175–190 (1996)

    Article  Google Scholar 

  20. H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Stand. 57, 217–221 (1956)

    Article  CAS  Google Scholar 

  21. A. Marotta, A. Buri, Kinetics of devitrification and differential thermal analysis. Thermochim. Acta 25, 155–160 (1978)

    Article  CAS  Google Scholar 

  22. I. Jlassi, N. Sdiri, H. Elhouichet, Electrical conductivity and dielectric properties of MgO doped lithium phosphate glasses. J. Non-cryst. Solids. 466–467, 45–51 (2017)

    Article  CAS  Google Scholar 

  23. J. Malek, The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta. 267, 61–73 (1955)

    Article  Google Scholar 

  24. A. Marotta, A. Buri, F. Branda, Nucleation in glass and differential thermal analysis. J. Mater. Sci. 16, 341–344 (1981)

    Article  CAS  Google Scholar 

  25. A. Marotta, S. Saiello, F. Branda, A. Buri, Activation energy for the crystallization of glass from DDTA curves. J. Mater. Sci. 17, 105–108 (1982)

    Article  CAS  Google Scholar 

  26. M. Kang, S. Kang, Influence of Al2O3 additions on the crystallization mechanism and properties of diopside/anorthite hybrid glass–ceramics for LED packaging materials. J. Cryst. Growth 326, 124–127 (2011)

    Article  CAS  Google Scholar 

  27. B. Li, Y. Guo, J. Fang, Effect of MgO addition on crystallization, microstructure and properties of glass–ceramics prepared from solid wastes. J. Alloys Compd. 881, 159821 (2021)

    Article  CAS  Google Scholar 

  28. H. Kun, W. Yanhang, Z. Chengkui, Z. Huifeng, L. Yonghua, C. Jiang, H. Bin, M. Juanrong, Influence of Al2O3 additions on crystallization mechanism and conductivity of Li2O–Ge2O–P2O5 glass–ceramics. Physica B Condens. Matter. 406, 2947–2950 (2011)

    Article  CAS  Google Scholar 

  29. C.S. Ray, D.E. Day, W. Huang, K. Narayan, T.S. Cull, K.F. Kelton, Non-isothermal calorimetric studies of the crystallization of lithium disilicate glass. J. Non-cryst. Solids. 204, 1–12 (1996)

    Article  CAS  Google Scholar 

  30. M. Fathollahi, S. Pourmortazavi, S. Hossenini, Particle size effects on thermal decomposition of energetic material. J. Energ. Mater. 26, 52–69 (2008)

    Article  CAS  Google Scholar 

  31. A. Arora, E.R. Shaaban, K. Singh, O.P. Pandey, Non-isothermal crystallization kinetics of ZnO–BaO–B2O3–SiO2 glass. J. Non-cryst. Solids. 354, 3944–3951 (2008)

    Article  CAS  Google Scholar 

  32. M. Ghasemzadeh, A. Nemati, A. Nozad Golikand, Z. Hamnabard, S. Baghshahi, Utilization of DTA in the determination of a crystallization mechanism in transparent glass–ceramics with a nanocrystalline structure. Inorg. Nano-Met. Chem. 41, 561–570 (2011)

    CAS  Google Scholar 

  33. C.R. Chang, J.H. Jean, Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable CaO–B2O3–SiO2 glass-ceramics. J. Am. Ceram. Soc. 82, 1725–1732 (1999)

    Article  CAS  Google Scholar 

  34. M. Avrami, Kinetics of phase change: I. General theory. J. Chem. Phys. 7, 1103–1112 (1939)

    Article  CAS  Google Scholar 

  35. M. Avrami, Kinetics of phase change: II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940)

    Article  CAS  Google Scholar 

  36. M. Avrami, Kinetics of phase change: III. Granulation, phase change and microstructure. J. Chem. Phys. 9, 177–184 (1941)

    Article  CAS  Google Scholar 

  37. X.J. Xu, C.S. Ray, D.E. Day, Nucleation and crystallization of Na2O · 2CaO · 3SiO2 glass by differential thermal analysis. J. Am. Ceram. Soc. 74, 909–914 (1991)

    Article  CAS  Google Scholar 

  38. A. Das, M. Goswami, M. Krishnan, Crystallization kinetics of Li2O–Al2O3–GeO2–P2O5 glass–ceramics system. J. Therm. Anal. Calorim. 131, 2421–2431 (2018)

    Article  CAS  Google Scholar 

  39. C.S. Ray, D.E. Day, Ceramic Transactions Nucleation and Crystallization in Liquids and Glasses (The American Ceramic Society, Ohio, 1993), pp. 207–223

    Google Scholar 

  40. Z. Lu, J. Lu, X. Li, G. Shao, Effect of MgO addition on sinterability, crystallization kinetics, and flexural strength of glass-ceramics from waste materials. Ceram. Int. 42, 3452–3459 (2016)

    Article  CAS  Google Scholar 

  41. J. Li, Y. Guo, G. Li, J. Chen, C. Li, Y. Zou, Investigation into the role of MgO in the synthesis of MAPO-11 large single crystals. Microporous Mesoporous Mater. 79, 79–84 (2005)

    Article  CAS  Google Scholar 

  42. S.M. Salman, S.N. Salama, H. Darwish, E.A. Mahdy, The role of MgO on the structural properties of CaO–Na2O(MgO)–P2O5–CaF2–SiO2 derived glass ceramics. Ceram. Int. 36, 55–61 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the 2020 Post Doc. Development Program of Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong-Ki Ryu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, JM., Liu, L., Lee, HJ. et al. Crystallization kinetics of lithium–aluminum–germanium–phosphate glass doped with MgO using a non-isothermal method. J. Korean Ceram. Soc. 58, 614–622 (2021). https://doi.org/10.1007/s43207-021-00137-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00137-1

Keywords

Navigation