Skip to main content
Log in

Navigation in Large Groups of Robots

  • Group Robotics (M Gini and F Amigoni, Section Editors)
  • Published:
Current Robotics Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As robots become more ubiquitous, research in large-scale robot navigation has gained more focus given their potential real-world applications. This review intends to provide a summary of recent advances on the field of multi-robot navigation, focusing on cases where scale is an important attribute of the system.

Recent Findings

Experimental evaluation of a large number of robots is complex due to size and cost constraints. Successful applications of large-scale robot navigation approaches are in structured and known environments where robots are centrally controlled. Advances in the standardization of robot hardware and software are increasing interest for research in navigation for large groups of robots.

Summary

We present a review on navigation approaches for multi-robot systems. Then, we focus on recent articles that deal with the problem of moving a large number of robots in virtual or physical space. Finally, we summarize our main findings and emphasize the challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reif, J., Complexity of the mover’s problem and generalizations. 20th Annual Symposium on Foundations of Computer Science, 1979:421–427. https://doi.org/10.1109/SFCS.1979.10

  2. Yu, J. and LaValle S., 2013, Structure and intractability of optimal multi-robot path planning on graphs. Twenty-Seventh AAAI Conference on Artificial Intelligence: 1443–1449. https://doi.org/10.5555/2891460.2891662.

  3. Nilsson, N., A mobile automaton: An application of artificial intelligence techniques. Proceedings of the 1st international Joint Conference on Artificial intelligence 1969: 509–520.

  4. Schwartz J, Sharir M. Algorithmic motion planning in robotics. Algorithms and Complexity. 1990;22:391–430. https://doi.org/10.1109/2.16221.

    Article  MathSciNet  MATH  Google Scholar 

  5. LaValle S, ed: Planning Algorithms. Cambridge University Press; 2006.

  6. Latombe J, ed: Robot Motion Planning. Springer Science & Business Media; 1991. https://doi.org/10.1007/978-1-4615-4022-9

  7. Galceran E, Carreras M. A survey on coverage path planning for robotics. Robot Auton Syst. 2013;61:1258–76. https://doi.org/10.1016/j.robot.2013.09.004.

    Article  Google Scholar 

  8. Kavraki L, Svestka P, Latombe J, Overmars M. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation. 1996;4:566–80. https://doi.org/10.1109/70.508439.

    Article  Google Scholar 

  9. LaValle, S., Kuffner, J. and Donald, BR., Rapidly-exploring random trees: Progress and prospects. Algorithmic and computational robotics: new directions, 2001: 293–308.

  10. Chatila R, Système de navigation pour un robot mobile autonome: modélisation et processus décisionnels. Thesis Dissertation, Université Toulouse III Paul Sabatier, France, 1981.

  11. Brooks R. Solving the find-path problem by good representation of free space. IEEE Transactions on Systems, Man, and Cybernetics. 1983;2:190–7. https://doi.org/10.1109/TSMC.1983.6313112.

    Article  MathSciNet  Google Scholar 

  12. Lumelsky V, Stepanov A. Path-planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica. 1987;2:403–30. https://doi.org/10.1007/BF01840369.

    Article  MathSciNet  MATH  Google Scholar 

  13. Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robotics Research. 1986;2:90–8. https://doi.org/10.1177/027836498600500106.

    Article  Google Scholar 

  14. Volpe, R. and Khosla, P., Artificial potentials with elliptical isopotential contours for obstacle avoidance. 26th IEEE conference on decision and Control, 1987: 180–185. https://doi.org/10.1109/CDC.1987.272738.

  15. Khosla, P. and Volpe, R., Superquadric artificial potentials for obstacle avoidance and approach. Proceedings. IEEE International Conference on Robotics and Automation, 1988:1778–1784. https://doi.org/10.1109/ROBOT.1988.12323.

  16. Rimon E, Koditschek D. Exact robot navigation using artificial potential functions. IEEE Transactions on Robotics and Automation. 1992;5:501–18. https://doi.org/10.1109/70.163777.

    Article  Google Scholar 

  17. Elfes A. Sonar-based real-world mapping and navigation. IEEE Journal on Robotics and Automation. 1987;3:249–65. https://doi.org/10.1109/JRA.1987.1087096.

    Article  Google Scholar 

  18. Borenstein J, Koren Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Transactions on Robotics and Automation. 1991;3:278–88. https://doi.org/10.1109/70.88137.

    Article  Google Scholar 

  19. Erdmann M and Lozano-Pérez T, On multiple moving objects. Proc IEEE Int Conf Robotics Automation, 1986:1419–1424. https://doi.org/10.1109/ROBOT.1986.1087401.

  20. Mataric M, Interaction and intelligent behavior [Ph.D. Thesis]. Massachusetts Institute of Technology, Cambridge, Massachusetts; 1994.

  21. McLurkin, J., Stupid robot tricks: A behavior-based distributed algorithm library for programming swarms of robot [Ph.D. Thesis]. Massachusetts Institute of Technology, Cambridge, Massachusetts; 2004.

  22. Fox D, Burgard W, Thrun S. The dynamic window approach to collision avoidance. IEEE Robotics and Automation Magazine. 1997;1:23–33. https://doi.org/10.1109/100.580977.

    Article  Google Scholar 

  23. Warren, C., Multiple robot path coordination using artificial potential fields. IEEE International Conference on Robotics and Automation, 1990;500–505. https://doi.org/10.1109/ROBOT.1990.126028.

  24. Chang D, Shadden S, Mardsen, J. and Olfati-Saber, R., Collision avoidance for multiple agent systems. 42nd IEEE International Conference on Decision and Control, 2003;539–543.

  25. Brock, O., and Khatib, O., High-speed navigation using the global dynamic window approach. IEEE International Conference on Robotics and Automation, 1999:341–346. https://doi.org/10.1109/ROBOT.1999.770002.

  26. Masoud S, Masoud A. Motion planning in the presence of directional and regional avoidance constraints using nonlinear, anisotropic, harmonic potential fields: a physical metaphor. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans. 2002;32(6):705–23. https://doi.org/10.1109/TSMCA.2002.807030.

    Article  Google Scholar 

  27. Reif J, Wang H. Social potential fields: A distributed behavioral control for autonomous robots. Robotics and Autonomous Systems. 1999;27(3):171–94. https://doi.org/10.1016/S0921-8890(99)00004-4.

    Article  Google Scholar 

  28. Reynolds C. Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Computer Graphics. 1987;214:25–34. https://doi.org/10.1145/37402.37406.

    Article  Google Scholar 

  29. Helbing D, Monlar P. Social force model for pedestrian dynamics. Physical review E. 1995;515:4282. https://doi.org/10.1103/PhysRevE.51.4282.

    Article  Google Scholar 

  30. Shao W, Terzopoulos D. Autonomous pedestrians. Graphical Models. 2007;69(5–6):246–74. https://doi.org/10.1016/j.gmod.2007.09.001.

    Article  Google Scholar 

  31. Guy S, Chhugani, J., Curtis, S., Pradeep, D., Lin, M and Manocha, D., PLEdestrians: a least-effort approach to crowd simulation. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2010;119–128. https://doi.org/10.2312/SCA/SCA10/119-128.

  32. Pelechano N, Allbeck J and Badler N, Controlling individual agents in high-density crowd simulation. Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2007, 99–108. https://doi.org/10.1145/1272690.1272705.

  33. Guy S, Kimn S, Lin M and Manocha D, Simulating heterogeneous crowd behaviors using personality trait theory. Proc ACM SIGGRAPH/Eurogr Symp Comp Anim, 2011:43–52. https://doi.org/10.1145/2019406.2019413.

  34. Popelová M, Bída M, Brom C, Gemrot J and Tomek J, When a couple goes together: walk along steering. Motion in Games, 2011;278–289. https://doi.org/10.1007/978-3-642-25090-3_24.

  35. Fiorini P, Shiller Z. Motion planning in dynamic environments using velocity obstacles. The International Journal of Robotics Research. 1998;177:760–72. https://doi.org/10.1177/027836499801700706.

    Article  Google Scholar 

  36. Pettré J, Ondrej J, Olivier A, Crétual A and Donikian S, Experiment-based modeling, simulation and validation of interactions between virtual walkers. ACM SIGGRAPH/Eurographics Symp Comp Anim, 2009;189–198. https://doi.org/10.1145/1599470.1599495.

  37. Berg J, Guy S, Lin M, Manocha D. Reciprocal n-body collision avoidance. 14th Int Symp Robot Res ISRR. 2011;70:3–19. https://doi.org/10.1007/978-3-642-19457-3_1.

    Article  MATH  Google Scholar 

  38. Alonso-Mora J, Breitenmoser A, Rufli M, Beardsley P and Siegwart R, Optimal reciprocal collision avoidance for multiple non-holonomic robots. Distributed Autonomous Robot Syst, 2013 203–216. https://doi.org/10.1007/978-3-642-32723-0_15.

  39. Hennes D, Claes D, Meeussen W, Tuyls K. Multi-robot collision avoidance with localization uncertainty. Auton Agent Multi-Agent Syst. 2012;2:147–54.

    Google Scholar 

  40. Pendleton S, Andersen H, Du X, Shen X, Mehjani M, Eng Y, et al. Perception, planning, control, and coordination for autonomous vehicles. Machines. 2017;5(1):6. https://doi.org/10.3390/machines5010006.

    Article  Google Scholar 

  41. Karamouzas I, Skinner B, Guy S. Universal power law governing pedestrian interactions. Phys Rev Lett. 2014;113:23. https://doi.org/10.1103/PhysRevLett.113.238701.

    Article  Google Scholar 

  42. Davis B, Karamouzas I, Guy S, NH-TTC: A gradient-based framework for generalized anticipatory collision avoidance. 2019, arXiv preprint arXiv:1907.05945, https://arxiv.org/abs/1907.05945. Accessed 1 June 2019.

  43. Tampuu A, Matiisen T, Kodelka D, Kuzkovkin I, Korjus K, Aru J, et al. Multiagent cooperation and competition with deep reinforcement learning. PLoS One. 2017;12:4. https://doi.org/10.1371/journal.pone.0172395.

    Article  Google Scholar 

  44. Ding W, Li S, Qian H and Chen Y, Hierarchical reinforcement learning framework towards multi-agent navigation. IEEE Int Conf Robot Biomimetics, 2018;237–242. https://doi.org/10.1109/ROBIO.2018.8664803.

  45. Fan T, Long P, Liu W, Pan J. Fully distributed multi-robot collision avoidance via deep reinforcement learning for safe and efficient navigation in complex scenarios. The International Journal of Robotics Research. 2020;39:856–92.

  46. Chen Y, Liu M, Everett M and How J, Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. IEEE Int Conf Robot Autom, 2017;285–292. https://doi.org/10.1109/ICRA.2017.7989037.

  47. Carlson J, and Murphy R, Reliability analysis of mobile robots. IEEE Int Conf Robot Autom 2003;274–281. https://doi.org/10.1109/ROBOT.2003.1241608.

  48. Balch T and Hybinette, M., Social potentials for scalable multi-robot formations. IEEE International Conference on Robotics and Automation, 2000;73–80. https://doi.org/10.1109/ROBOT.2000.844042.

  49. Konolige, K., Fox, D., Ortiz, C., Agno, A., Eriksen, M., Limketkai, B., Ko, J., Morisset, B., Schulz, D., and Stewart B., Centibots: very large scale distributed robotic teams. Experimental Robotics IX, 2006:131–140.. https://doi.org/10.1007/11552246_13.

  50. Belta C, Kumar V. Abstraction and control for groups of robots. IEEE Transactions on Robotics. 2004;20(5):865–75. https://doi.org/10.1109/TRO.2004.829498.

    Article  Google Scholar 

  51. Siméon T, Leroy S, Laumond J. Path coordination for multiple mobile robots: a resolution-complete algorithm. IEEE Transactions on Robotics and Automation. 2002;18(1):42–9. https://doi.org/10.1109/70.988973.

    Article  Google Scholar 

  52. Stern, R., Sturtevant N., Felner A., Koenig S., Ma H., Walker T., Li J., Atzmon D., Cohen L., Kunmar T., Boyarski E. and Barták R., Multi-agent pathfinding: definitions, variants, and benchmarks. Proceedings of the Twelfth International Symposium on Combinatorial Search, 2019:151:158.

  53. •• Li, J., Tinka, A., Kiesel, S., Durham, J., Kumar, TK. and Koenig, S., Lifelong Multi-Agent Path Finding in Large-Scale Warehouses. Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, 2020:1898–1900. This paper closes the gap between research in large-scale robot navigation and its application in a real-world problem, in automated warehouses, scaling up to 1000 robots.

  54. Wurman P, D’Andrea R, Mountz M. Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI magazine. 2008;29:1–9.

    Google Scholar 

  55. Morris, Robert, Pasareanu, Corina S, Luckow, Kasper, Malik, Waqar, Ma, Hang and Kumar, TK Satish and Koenig, S., Planning, scheduling and monitoring for airport surface operations. Workshops at the Thirtieth AAAI Conference on Artificial Intelligence, 2016.

  56. Ma H, Hönig W, Kumar YK, Atanian N, Koenig S. Lifelong path planning with kinematic constraints for multi-agent pickup and delivery. Proceedings of the AAAI Conference on Artificial Intelligence. 2019;33:7651–8.

    Article  Google Scholar 

  57. Hönig W, Preiss J, Kumar TK, Sukhatme G, Ayanian N. Trajectory planning for quadrotor swarms. IEEE Transactions on Robotics. 2018;34(4):856–69. https://doi.org/10.1109/TRO.2018.2853613.

    Article  Google Scholar 

  58. Hamer M, Widmer L, D’andrea R. Fast generation of collision-free trajectories for robot swarms using GPU acceleration. IEEE Access. 2018;7:6679–90. https://doi.org/10.1109/ACCESS.2018.2889533.

    Article  Google Scholar 

  59. Tan, Q., Fan, T., Pan, J. and Manocha, D., DeepMNavigate: Deep reinforced multi-robot navigation unifying local & global collision avoidance. 2019, arXiv preprint, https://arxiv.org/abs/1910.09441

  60. • Arul S, Sathyamoorthy A, Patel S, Otte M, Xu H, Lin M, et al. LSwarm: Efficient collision avoidance for large swarms with coverage constraints in complex urban scenes. IEEE Robotics and Automation Letters. 2019;4(4):3940–7. https://doi.org/10.1109/LRA.2019.2929981This work narrows the gap between research in this area and one of its target applications: package delivery via fleets of drones.

    Article  Google Scholar 

  61. Siciliano, B. and Khatib, O., Springer handbook of robotics, Springer, 2016. https://doi.org/10.1007/978-3-319-32552-1_1.

  62. • Godoy J, Chen T, Guy S, Karamouzas I, Gini M. ALAN: Adaptive learning for multi-agent navigation. Autonomous Robots. 2018;42(8):1543–62. https://doi.org/10.1007/s10514-018-9719-4This work shows how robots can act using local information to avoid congestion in large-scale robot navigation tasks (with up to 300 agents) using only local sensing.

    Article  Google Scholar 

  63. Godoy, J., Karamouzas, I., Guy, S. and Gini, M., Implicit coordination in crowded multi-agent navigation. Thirtieth AAAI Conference on Artificial Intelligence, 2016:2487–2493.

  64. Gayle, R., Moss, W., Lin, M. and Manocha, D., Multi-robot coordination using generalized social potential fields. IEEE International Conference on Robotics and Automation, 2009:106–113. https://doi.org/10.1109/ROBOT.2009.5152765.

  65. Spears W, Spears D, Hamann J, Heil R. Distributed, physics-based control of swarms of vehicles. Autonomous Robots. 2004;17(2–3):137–62. https://doi.org/10.1023/B:AURO.0000033970.96785.f2.

    Article  Google Scholar 

  66. Kalantar, S. and Zimmer, U., Distributed shape control of homogeneous swarms of autonomous underwater vehicles. Autonomous Robots, 2007:22:1:37–53. https://doi.org/10.1007/s10514-006-9002-y

  67. Saber R, Murray R. Flocking with obstacle avoidance: cooperation with limited communication in mobile networks. IEEE International Conference on Decision and Control. 2003;2:2022–8. https://doi.org/10.1109/CDC.2003.1272912.

    Article  Google Scholar 

  68. Olfati-Saber, R., Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks. Proceedings of the 45th IEEE Conference on Decision and Control, 2006:5060–5066. https://doi.org/10.1109/CDC.2006.376811

  69. Sabattini L, Secchi C, Chopra N, Gasparri A. Distributed control of multirobot systems with global connectivity maintenance. IEEE Transactions on Robotics. 2013;29(5):1326–32. https://doi.org/10.1109/TRO.2013.2267971.

    Article  Google Scholar 

  70. Ji M, Egerstedt M. Distributed coordination control of multiagent systems while preserving connectedness. IEEE Transactions on Robotics. 2007;23(4):693–703. https://doi.org/10.1109/TRO.2007.900638.

    Article  Google Scholar 

  71. He, L., Pan, J., Wang, W. and Manocha, D., Proxemic group behaviors using reciprocal multi-agent navigation. IEEE international conference on robotics and automation, 2016:292–297. https://doi.org/10.1109/ICRA.2016.7487147.

  72. Li, H., Weng, B., Gupta, A., Pan, J. and Zhang, W., Reciprocal collision avoidance for general nonlinear agents using reinforcement learning. 2019 arXiv preprint, https://arxiv.org/abs/1910.10887

  73. Godoy, J., Karamouzas, I., Guy, S. and Gini, M., Adaptive learning for multi-agent navigation. Proceedings of the 2015 International conference on autonomous agents and multiagent systems, 2015:1577:1585. https://dl.acm.org/doi/10.5555/2772879.2773353

  74. Ducatelle F, Di Caro G, Förster A, Bonani M, Dorigo M, Magnenat S, et al. Cooperative navigation in robotic swarms. Swarm Intelligence. 2014;8:1–33. https://doi.org/10.1007/s11721-013-0089-4.

    Article  Google Scholar 

  75. Rubenstein M, Cornejo A, Nagpal R. Programmable self-assembly in a thousand-robot swarm. Science. 2014;345:798–9. https://doi.org/10.1126/science.1254295.

    Article  Google Scholar 

  76. Gauci M, Nagpal R, Rubenstein M. Programmable self-disassembly for shape formation in large-scale robot collectives. Distributed Autonomous Robotic Systems. 2018;6:573–86. https://doi.org/10.1007/978-3-319-73008-0_40.

    Article  Google Scholar 

  77. •• Li S, Batra R, Brown D, Chang H, Ranganathan N, Hoberman C, et al. Particle robotics based on statistical mechanics of loosely coupled components. Nature. 2019;567(7748):361–5. https://doi.org/10.1038/s41586-019-1022-9This work takes minimalistic robots to an extreme and shows that even when robots do not have control of their motions, in large numbers they can move and achieve tasks such as navigation and object transportation.

    Article  Google Scholar 

  78. Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, et al. ROS: an open-source robot operating system. ICRA Workshop on Open Source Software. 2009;3:5.

    Google Scholar 

  79. Open Source Robotics Foundation (OSRF). ROS2. https://github.com/ros2

  80. Sibley, G., Rahimi, M. and Sukhatme, G., Robomote: a tiny mobile robot platform for large-scale ad-hoc sensor networks. IEEE International Conference on Robotics and Automation, 2002:1143–1148. https://doi.org/10.1109/ROBOT.2002.1014697.

  81. Nouyan S, Gross R, Bonani M, Mondada F, Dorigo M. Teamwork in self-organized robot colonies. IEEE Transactions on Evolutionary Computation. 2009;13(4):695–711. https://doi.org/10.1109/TEVC.2008.2011746.

    Article  Google Scholar 

  82. Godoy J, Karamouzas I, Guy SJ, Gini M. Anytime navigation with progressive hindsight optimization. IEEE International Conference on Intelligent Robots and Systems. 2014;730:735.

    Google Scholar 

  83. Koenig N, Howard A. Design and use paradigms for gazebo, an open-source multi-robot simulator. IEEE International Conference on Intelligent Robots and Systems. 2004;3:2149–54.

    Google Scholar 

  84. Pinciroli C., Trianni V., O’Grady R., Pini G., Brutschy A., Brambilla M., Mathews N., Ferrante E., Di Caro G., Ducatelle F., Stirling T., Gutiérrez Á., Gambardella L. and Dorigo M., ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011: 5027–5034.

  85. Vaughan R. Massively multi-robot simulation in stage. Swarm Intelligence. 2008;2:189–208.

    Article  Google Scholar 

  86. Michel O. Webots: professional mobile robot simulation. Journal of Advanced Robotics System. 2004;1:39–42.

    Google Scholar 

  87. Rohmer, E., Signgh, S. and Freese M., CoppeliaSim (formerly V-REP): a versatile and scalable robot simulation framework, Proceedings of The International Conference on Intelligent Robots and Systems, 2013.

  88. Diankov R., Automated construction of robotic manipulation programs. Thesis Dissertation, Carnegie Mellon University, Pennsylvania, 2010.

  89. Echeverria G., Lemaignan S., Degroote A., Lacroix S., Karg M., Koch P., Lesire C. and Stinckwich S., Simulating complex robotic scenarios with MORSE. SIMPAR, 2012.

  90. Barták R, Krasicenko I, Svancara J. Multi-agent path finding on Ozobots. International Joint Conference on Artificial Intelligence. 2019;6491:6493. https://doi.org/10.24963/ijcai.2019/933.

    Article  Google Scholar 

  91. Yu J, LaValle S. Optimal multi-robot path planning on graphs: complete algorithms and effective heuristics. IEEE Transactions on Robotics. 2016;32(5):1163–77. https://doi.org/10.1109/TRO.2016.2593448.

    Article  Google Scholar 

  92. Van den Berg J, Overmars M. Prioritized motion planning for multiple robots. IEEE International Conference on Intelligent Robots and Systems. 2005;430:435. https://doi.org/10.1109/IROS.2005.1545306.

    Article  Google Scholar 

  93. Han D, Yu J. Effective heuristics for multi-robot path planning in warehouse environments. International Symposium on Multi-Robot and Multi-Agent Systems. 2019;10:12. https://doi.org/10.1109/MRS.2019.8901065.

    Article  Google Scholar 

  94. Manenti L, Manzoni S, Vizzari G, Ohtsuka K, Shimura K. An agent-based proxemic model for pedestrian and group dynamics: motivations and first experiments. Multi-Agent-Based Simulation II, series of Lecture Notes in Computer Science. 2012;7124:74–89. https://doi.org/10.1007/978-3-642-28400-7_6.

    Article  Google Scholar 

Download references

Funding

This work was partially funded by the ANID under grant FONDECYT INICIACION number 11191197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Asiain.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Group Robotics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asiain, J., Godoy, J. Navigation in Large Groups of Robots. Curr Robot Rep 1, 203–213 (2020). https://doi.org/10.1007/s43154-020-00017-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43154-020-00017-2

Keywords

Navigation