Skip to main content
Log in

Massively multi-robot simulation in stage

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Stage is a C++ software library that simulates multiple mobile robots. Stage version 2, as the simulation backend for the Player/Stage system, may be the most commonly used robot simulator in research and university teaching today. Development of Stage version 3 has focused on improving scalability, usability, and portability. This paper examines Stage’s scalability.

We propose a simple benchmark for multi-robot simulator performance, and present results for Stage. Run time is shown to scale approximately linearly with population size up to 100,000 robots. For example, Stage simulates 1 simple robot at around 1,000 times faster than real time, and 1,000 simple robots at around real time. These results suggest that Stage may be useful for swarm robotics researchers who would otherwise use custom simulators, with their attendant disadvantages in terms of code reuse and transparency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amanatides, J., & Woo, A. (1987). A fast voxel traversal algorithm for ray tracing. In Proceedings of the conference of the European association for computer graphics (Eurographics ’87) (pp. 3–10). Amsterdam: Elsevier Science.

    Google Scholar 

  • Anderson, M., Thaete, L., & Wiegand, N. (2007). Player/Stage: a unifying paradigm to improve robotics education delivery. In Workshop on research in robots for education at robotics: science and systems conference.

  • Balch, T. Behavioral diversity in learning robot teams. PhD thesis, College of Computing, Georgia Institute of Technology, 1998.

  • Barroso, L. A., Dean, J., & Holzle, U. (2003). Web search for a planet: the Google cluster architecture. IEEE Micro, 23(2), 22–28.

    Article  Google Scholar 

  • Batalin, M. A., & Sukhatme, G. S. (2003). Efficient exploration without localization. In Proceedings of the IEEE international conference on robotics and automation (pp. 2714–2719). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Batalin, M. A., & Sukhatme, G. S. (2004). Using a sensor network for distributed multi-robot task allocation. In Proceedings of the IEEE international conference on robotics and automation (pp. 158–164). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Batalin, M., & Sukhatme, G. (2005). The analysis of an efficient algorithm for robot coverage and exploration based on sensor network deployment. In Proceedings of the IEEE international conference on robotics and automation (pp. 3478–3485). Los Alamitos: IEEE Computer Society Press.

    Chapter  Google Scholar 

  • Busch, M., Skubic, M., Keller, J., & Stone, K. (2007). A robot in a water maze: learning a spatial memory task. In Proceedings of the IEEE international conference on robotics and automation (pp. 1727–1732). Los Alamitos: IEEE Computer Society Press.

    Chapter  Google Scholar 

  • Carpin, S., Lewis, M., Wang, J., Balakirsky, S., & Scrapper, C. (2007). USARSim: a robot simulator for research and education. In Proceedings of the IEEE international conference on robotics and automation (pp. 1400–1405). Los Alamitos: IEEE Computer Society Press.

    Chapter  Google Scholar 

  • Chang, R. S., & Wang, S. H. (2008). Self-deployment by density control in sensor networks. IEEE Transactions on Vehicular Technology, 57(3), 1745–1755.

    Article  MathSciNet  Google Scholar 

  • Chang, H., Lee, C., Lu, Y., & Hu, Y. (2006). Simultaneous localization and mapping with environmental structure prediction. In Proceedings of the IEEE international conference on robotics and automation (pp. 4069–4074). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Craighead, J., Murphy, R., Burke, J., & Goldiez, B. (2007). A survey of commercial & open source unmanned vehicle simulators. In Proceedings of the IEEE international conference on robotics and automation (pp. 852–857). Los Alamitos: IEEE Computer Society Press.

    Chapter  Google Scholar 

  • Dorigo, M., & Şahin, E. (Eds.) Special issue: swarm robotics. Autonomous Robots, 17(2–3), 2004.

  • Fredslund, J., & Matarić, M. J. (2002). Huey, Dewey, Louie, and GUI—commanding robot formations. In Proceedings of the IEEE international conference on robotics and automation (pp. 175–180). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Gerkey, B. P., Vaughan, R. T., Støy, K., Howard, A., Sukhatme, G., & Matarić, M. J. (2001). Most valuable player: a robot device server for distributed control. In Proceedings of the IEEE/RSJ international conference on intelligent robotic systems (pp. 1226–1231). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Gerkey, B., Vaughan, R. T., & Howard, A. (2003). The player/stage project: tools for multi-robot and distributed sensor systems. In Proceedings of the 11th international conference on advanced robotics (pp. 317–323). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Heckbert, P. (Ed). (1994). Graphics gems IV. Boston: Academic Press.

    MATH  Google Scholar 

  • Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem. In Proceedings of the international symposium on distributed autonomous robotic systems (pp. 299–308). New York: Springer.

    Google Scholar 

  • Howard, A., Parker, L. E., & Sukhatme, G. S. (2006). Experiments with large heterogeneous mobile robot team: exploration, mapping, deployment and detection. International Journal of Robotics Research, 25(5), 431–447.

    Article  Google Scholar 

  • Koenig, N., & Howard, A. (2004). Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 2149–2154). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Kramer, J., & Schultz, M. (2007). Development environments for autonomous mobile robots: a survey. Autonomous Robots, 22(2), 101–132.

    Article  Google Scholar 

  • Lin, L., & Zheng, Z. (2005). Combinatorial bids based multi-robot task allocation method. In Proceedings of the IEEE international conference on robotics and automation (pp. 1145–1150). Los Alamitos: IEEE Computer Society Press.

    Chapter  Google Scholar 

  • Michel, O. (2004). Webots: Professional mobile robot simulation. International Journal of Advanced Robotic Systems, 1(1), 39–42.

    Google Scholar 

  • Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L., & Dorigo, M. (2004). SWARM-BOT: a new distributed robotic concept. Autonomous Robots, 17(2-3), 193–221.

    Article  Google Scholar 

  • Şahin, E., & Spears, W. (2005). In Lecture notes in computer science : Vol. 3342. Swarm robotics: SAB 2004 international workshop, Revised Selected Papers Santa Monica, CA, USA, July 17, 2004. Heidelberg: Springer.

    Google Scholar 

  • Scrapper, C., Balakirsky, S., & Messina, E. (2006). MOAST and USARSim–a combined framework for the development and testing of autonomous systems. In Proceedings of the SPIE. Bellingham: SPIE.

    Google Scholar 

  • Shell, D., & Matarić, M. (2004). Directional audio beacon deployment: an assistive multi-robot application. In Proceedings of the IEEE international conference on robotics and automation (pp. 2588–2594). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Seugling, A., & Rolin, M. (2006). Evaluation of physics engines and implementation of a physics module in a 3D authoring tool. Department of Computer Science, Umeoa University, Sweden: Master’s thesis.

    Google Scholar 

  • Winfield, A.F.T. (2000). Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. In Distributed autonomous robotic systems (pp. 273–282). Heidelberg: Springer.

    Google Scholar 

  • Ye, W., Vaughan, R. T., Sukhatme, G. S., Heidemann, J., Estrin, D., & Matarić, M. J. (2001). Evaluating control strategies for wireless-networked robots using an integrated robot and network simulation. In Proceedings of the IEEE international conference on robotics and automation (pp. 2941–2947). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Vaughan.

Electronic Supplementary Material

Video file

Video file

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughan, R. Massively multi-robot simulation in stage. Swarm Intell 2, 189–208 (2008). https://doi.org/10.1007/s11721-008-0014-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-008-0014-4

Keywords

Navigation