Skip to main content
Log in

A Rhizobium bacterium and its population dynamics under different culture conditions of its associated toxic dinoflagellate Gambierdiscus balechii

  • Research Paper
  • Published:
Marine Life Science & Technology Aims and scope Submit manuscript

Abstract

Rhizobium bacteria are known as symbionts of legumes for developing nodules on plant roots and fixing N2 for the host plants but unknown for associations with dinoflagellates. Here, we detected, isolated, and characterized a Rhizobium species from the marine toxic dinoflagellate Gambierdiscus culture. Its 16S rRNA gene (rDNA) is 99% identical to that of Rhizobium rosettiformans, and the affiliation is supported by the phylogenetic placement of its cell wall hydrolase -encoding gene (cwh). Using quantitative PCR of 16S rDNA and cwh, we found that the abundance of this bacterium increased during the late exponential growth phase of Gambierdiscus and under nitrogen limitation, suggesting potential physiological interactions between the dinoflagellate and the bacterium. This is the first report of dinoflagellate-associated Rhizobium bacterium, and its prevalence and ecological roles in dinoflagellate-Rhizobium relationships remain to be investigated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aagaard J, Sistrom W (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15:209–225

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Miller T, Erlandson K, Schneider R, Belas R (2001) Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol 3:380–396

    Article  CAS  PubMed  Google Scholar 

  • Amin SA, Green DH, Gärdes A, Romano A, Trimble L, Carrano CJ (2012) Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton: the role of light. Biometals 25:181–192

    Article  CAS  PubMed  Google Scholar 

  • Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, Morales RL, Berthiaume CT, Parker MS, Djunaedi B, Ingalls AE, Parsek MR, Moran MA, Armbrust EV (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98–101

    Article  CAS  PubMed  Google Scholar 

  • Andersen RA (2005) Algal culturing techniques. Elsevier, New York, p 596

    Google Scholar 

  • Anderson JM, Macfadyen A (1976) The role of terrestrial and aquatic organisms in decomposition processes. In: Proceedings of the 17th symposium of the BES

  • Axler RP, Redfield GW, Goldman CR (1981) The importance of regenerated nitrogen to phytoplankton productivity to phytoplankton productivity in a subalpine lake. Ecology 62:345–354

    Article  Google Scholar 

  • Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lünsdorf H, Pukall R, Wagner-Döbler I (2005) Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Biebl H, Tindall BJ, Pukall R, Lünsdorf H, Allgaier M, Wagner-Döbler I (2006) Hoeflea phototrophica sp. nov., a novel marine aerobic alphaproteobacterium that forms bacteriochlorophyll a. Int J Syst Evol Microbiol 56:821–826

    Article  CAS  PubMed  Google Scholar 

  • Bloesch J, Stadelmann P, Bührer H (1977) Primary production, mineralization, and sedimentation in the euphotic zone of two Swiss lakes. Limnol Oceanogr 22:511–526

    Article  CAS  Google Scholar 

  • Brinkmeyer R, Rappé M, Gallacher S, Medlin L (2000) Development of clade-(Roseobacter and Alteromonas) and taxon-specific oligonucleotide probes to study interactions between toxic dinoflagellates and their associated bacteria. Eur J Phycol 35:315–329

    Article  Google Scholar 

  • Cole JJ (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Mak YL, Lu CK, Mei HH, Wu JJ, Lee WH, Chan LL, Lim PT, Mustapa NI, Lim HC, Wolf M, Li D, Luo Z, Gu H, Leaw CP, Lu D (2017) Taxonomic assignment of the benthic toxigenic dinoflagellate Gambierdiscus sp. type 6 as Gambierdiscus balechii (Dinophyceae), including its distribution and ciguatoxicity. Harmful Algae 67:107–118

    Article  CAS  PubMed  Google Scholar 

  • Delucca R, McCracken MD (1977) Observations on interactions between naturally-collected bacteria and several species of algae. Hydrobiologia 55:71–75

    Article  Google Scholar 

  • Dittami SM, Barbeyron T, Boyen C, Cambefort J, Collet G, Delage L, Gobet A, Groisillier A, Leblanc C, Michel G, Scornet D, Siegel A, Tapia JE, Tonon T (2014) Genome and metabolic network of “Candidatus Phaeomarinobacter ectocarpi” Ec32, a new candidate genus of Alphaproteobacteria frequently associated with brown algae. Front Genet 5:241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dittami SM, Duboscq-Bidot L, Perennou M, Gobet A, Corre E, Boyen C, Tonon T (2016) Host–microbe interactions as a driver of acclimation to salinity gradients in brown algal cultures. ISME J 10:51–63

    Article  CAS  PubMed  Google Scholar 

  • Fisher RF, Long SR (1992) Rhizobium–plant signal exchange. Nature 357:655–660

    Article  CAS  PubMed  Google Scholar 

  • Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7:e42149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golterman H (1972) Role of phytoplankton in detritus formation. Memorie dell’Istituto Italiano di Idrobiologia 29:89–103

    CAS  Google Scholar 

  • Guillard R, Hargraves P (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236

    Article  Google Scholar 

  • Gutierrez T, Green DH, Whitman WB, Nichols PD, Semple KT, Aitken MD (2012) Algiphilus aromaticivorans gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from a culture of the marine dinoflagellate Lingulodinium polyedrum, and proposal of Algiphilaceae fam. nov. Int J Syst Evol Microbiol 62:2743–2749

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson BP, Lutzoni F (2009) A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. Symbiosis 49:163–180

    Article  CAS  Google Scholar 

  • Ishikawa S, Hara Y, Ohnishi R, Sekiguchi J (1998) Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J Bacteriol 180:2549–2555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong HJ, Seong KA, Yoo YD, Kim TH, Kang NS, Kim S, Park JY, Kim JS, Kim GH, Song JY (2008) Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. J Eukaryot Microbiol 55:271–288

    Article  PubMed  Google Scholar 

  • Kaur J, Verma M, Lal R (2011) Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Müller 1986 as Rhizobium aggregatum comb. nov. Int J Syst Evol Microbiol 61:1218–1225

    Article  CAS  PubMed  Google Scholar 

  • Kim JD, Kim JY, Park JK, Lee CG (2009) Selective control of the prorocentrum minimum harmful algal blooms by a novel algal-lytic bacterium pseudoalteromonas haloplanktis AFMB-008041. Mar Biotechnol 11:463–472

    Article  CAS  Google Scholar 

  • Kim B-H, Ramanan R, Cho D-H, Oh H-M, Kim H-S (2014a) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 69:95–105

    Article  CAS  Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014b) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  PubMed  Google Scholar 

  • Krause G, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer JD, Voolstra CR, Santos SR (2018) Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol 28(2570–2580):e2576

    Google Scholar 

  • Lartigue J, Jester EL, Dickey R, Villareal T (2009) Nitrogen source effects on the growth and toxicity of two strains of the ciguatera-causing dinoflagellate Gambierdiscus toxicus. Harmful Algae 8:781–791

    Article  CAS  Google Scholar 

  • Li M, Shi X, Guo C, Lin S (2016) Phosphorus deficiency inhibits cell division but not growth in the dinoflagellate Amphidinium carterae. Front microbiol 7:826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Zhang H, Huang B, Lin S (2012) Alkaline phosphatase gene sequence characteristics and transcriptional regulation by phosphate limitation in Karenia brevis (Dinophyceae). Harmful Algae 17:14–24

    Article  CAS  Google Scholar 

  • Mitsustin E, Sil’nikova V (1968) Biological fixation of atmospheric nitrogen. Nauka, Moscow

    Google Scholar 

  • Nakanishi K, Nishijima M, Nishimura M, Kuwano K, Saga N (1996) Bacteria that induce morphogenesis in Ulva pertusa (Chlorophyta) grown under axenic conditions. J Phycol 32:479–482

    Article  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Nomata J, Mizoguchi T, Tamiaki H, Fujita Y (2006) A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified x-protein (bchX) and yz-protein (bchY-bchZ) from Rhodobacter capsulatus. J Biol Chem 281:15021–15028

    Article  CAS  PubMed  Google Scholar 

  • Palacios L, Arahal DR, Reguera B, Marín I (2006) Hoeflea alexandrii sp. nov., isolated from the toxic dinoflagellate Alexandrium minutum AL1V. Int J Syst Evol Microbiol 56:1991–1995

    Article  CAS  PubMed  Google Scholar 

  • Parisien A, Allain B, Zhang J, Mandeville R, Lan C (2008) Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 104:1–13

    CAS  PubMed  Google Scholar 

  • Platt T, Rao DS, Irwin B (1983) Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301:702

    Article  CAS  Google Scholar 

  • Price DC, Farinholt N, Gates C, Shumaker A, Wagner NE, Bienfang P, Bhattacharya D (2016) Analysis of Gambierdiscus transcriptome data supports ancient origins of mixotrophic pathways in dinoflagellates. Environ Microbiol 18:4501–4510

    Article  CAS  PubMed  Google Scholar 

  • Rambo IM, Dombrowski N, Constant L, Erdner D, Baker BJ (2020) Metabolic relationships of uncultured bacteria associated with the microalgae Gambierdiscus. Environ Microbiol 22:1764–1783

    Article  CAS  PubMed  Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    Article  CAS  PubMed  Google Scholar 

  • Robledo M, Jimenez-Zurdo JI, Velazquez E, Trujillo ME, Zurdo-Pineiro JL, Ramirez-Bahena MH, Ramos B, Diaz-Minguez JM, Dazzo F, Martinez-Molina E (2008) Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proc Natl Acad Sci USA 105:7064–7069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakami T, Nakahara H, Chinain M, Ishida Y (1999) Effects of epiphytic bacteria on the growth of the toxic dinoflagellate Gambierdiscus toxicus (Dinophyceae). J Exp Mar Biol Ecol 233:231–246

    Article  CAS  Google Scholar 

  • Shi X, Liu L, Li Y, Xiao Y, Ding G, Lin S, Chen J (2018) Isolation of an algicidal bacterium and its effects against the harmful-algal-bloom dinoflagellate Prorocentrum donghaiense (Dinophyceae). Harmful Algae 80:72–79

    Article  CAS  PubMed  Google Scholar 

  • Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Satoh N (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr Biol 23:1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Sule P, Belas R (2013) A novel inducer of Roseobacter motility is also a disruptor of algal symbiosis. J Bacteriol 195:637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YZ, Koch F, Gobler CJ (2010) Most harmful algal bloom species are vitamin B1 and B12 auxotrophs. Proc Natl Acad Sci 107:20756–20761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosteson T, Ballantine D, Tosteson C, Hensley V, Bardales A (1989) Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus. Appl Environ Microbiol 55:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanucci S, Guerrini F, Milandri A, Pistocchi R (2010) Effects of different levels of N-and P-deficiency on cell yield, okadaic acid, DTX-1, protein and carbohydrate dynamics in the benthic dinoflagellate Prorocentrum lima. Harmful Algae 9:590–599

    Article  CAS  Google Scholar 

  • Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M (2019) Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Front Microbiol 10:331

    Article  PubMed  PubMed Central  Google Scholar 

  • Vidyarathna NK, Granéli E (2013) Physiological responses of Ostreopsis ovata to changes in N and P availability and temperature increase. Harmful Algae 21:54–63

    Article  CAS  Google Scholar 

  • Wang C, Lin X, Li L, Lin L, Lin S (2017) Glyphosate shapes a dinoflagellate-associated bacterial community while supporting algal growth as sole phosphorus source. Front Microbiol 8:2530

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster G, Newberry CJ, Fry JC, Weightman AJ (2003) Assessment of bacterial community structure in the deep sub-seafloor biosphere by 16S rDNA-based techniques: a cautionary tale. J Microbiol Methods 55:155–164

    Article  CAS  PubMed  Google Scholar 

  • Wiese M (2012) Investigations into abiotic and biotic factors regulating saxitoxin synthesis in the dinoflagellate genus Alexandrium. Dissertation, University of New South Wales Australia

  • Zhang H, Bhattacharya D, Lin S (2005) Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J Phycol 41:411–420

    Article  CAS  Google Scholar 

  • Zhang C, Lin S, Huang L, Lu W, Li M, Liu S (2014) Suppression subtraction hybridization analysis revealed regulation of some cell cycle and toxin genes in Alexandrium catenella by phosphate limitation. Harmful Algae 39:26–39

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was funded by the Collaborative Research Fund from the Research Grant Council [C1012-15G] of Hong Kong. We thank Mr. Kaidian Zhang and Dr. Hua Zhang for their assistance in this study.

Author information

Authors and Affiliations

Authors

Contributions

ZW and SL: designed the research; ZW, XL, and WHL: performed the laboratory work; ZW: performed the data analysis; ZW, SL, and PKSL: wrote the paper.

Corresponding authors

Correspondence to Senjie Lin or Paul K. S. Lam.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Animal and human rights statement

This article does not contain any studies with human participants or animals performed by the authors.

Availability of data and material

The 16S rRNA gene sequence of Rhizobium rosettiformans strain GAMBA-01 is available in the National Center for Biotechnology Information (NCBI), accession number MN577391. The cell wall hydrolase and chlorophyllide a reductase iron protein subunit X sequences are available in NCBI and their accession numbers are MN714645 and MN714646, respectively.

Additional information

Edited by Chengchao Chen.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Yang, X., Lin, S. et al. A Rhizobium bacterium and its population dynamics under different culture conditions of its associated toxic dinoflagellate Gambierdiscus balechii. Mar Life Sci Technol 3, 542–551 (2021). https://doi.org/10.1007/s42995-021-00102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42995-021-00102-1

Keywords

Navigation