Skip to main content

Advertisement

Log in

Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton: the role of light

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). We have previously shown that algal-associated heterotrophic bacteria belonging to the γ-proteobacterial Marinobacter genus release the siderophore vibrioferrin (VF). The iron-VF complex was shown to be both far more photolabile than all previously examined photolabile siderophores and to generate a photoproduct incapable of re-chelating the released iron. Thus, the photo-generated iron was shown to be highly bioavailable both to the producing bacterium and its algal partner. In exchange, we proposed that algal cells produced dissolved organic matter that helped support bacterial growth and ultimately fueled the biosynthesis of VF through a light-dependent “carbon for iron mutualism”. While our knowledge of the importance of light to phototrophs is vast, there are almost no studies that examine the effects of light on microbial heterotrophs. Here, we characterize iron uptake mechanisms in “algal-associated” VF-producers. Fe uptake by a VF knock-out mutant mimics the wild-type strain and demonstrates the versatility of iron uptake mechanisms in Marinobacter VF-producers. We also show that VF-producers selectively regulate a subset of their siderophore-dependent iron uptake genes in response to light exposure. The regulation of iron uptake and transport genes by light is consistent with the light driven algal–bacterial “carbon for iron mutualism” hypothesis in the marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abergel RJ, Zawadzka AM, Raymond KN (2008) Petrobactin-mediated iron transport in pathogenic bacteria: coordination chemistry of an unusual 3,4-catecholate/citrate siderophore. J Am Chem Soc 130(7):2124–2125

    Article  PubMed  CAS  Google Scholar 

  • Alavi M, Miller T, Erlandson K, Schneider R, Belas R (2001) Bacterial community associated with Pfiesteria-like dinoflagellate cultures. Environ Microbiol 3(6):380–396

    Article  PubMed  CAS  Google Scholar 

  • Amin SA, Küpper FC, Green DH, Harris WR, Carrano CJ (2007) Boron binding by a siderophore isolated from marine bacteria associated with the toxic dinoflagellate Gymnodinium catenatum. J Am Chem Soc 129(3):478–479

    Article  PubMed  CAS  Google Scholar 

  • Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ (2009a) Photolysis of iron-siderophore chelates promotes bacterial–algal mutualism. Proc Natl Acad Sci USA 106(40):17071–17076. doi:10.1073/pnas.0905512106

    Article  PubMed  CAS  Google Scholar 

  • Amin SA, Green DH, Küpper FC, Carrano CJ (2009b) Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Inorg Chem 48(23):11451–11458. doi:10.1021/ic9016883

    Article  PubMed  CAS  Google Scholar 

  • Amin SA, Green DH, Waheeb DA, Gärdes A, Carrano CJ (2011) Siderophore mediated iron transport in the genus Marinobacter. BioMetals. doi:10.1007/s10534-011-9491-9

  • Barbeau K, Rue EL, Bruland KW, Butler A (2001) Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Nature 413(6854):409–413

    Article  PubMed  CAS  Google Scholar 

  • Barbeau K, Zhang G, Live DH, Butler A (2002) Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. J Am Chem Soc 124(3):378–379

    Article  PubMed  CAS  Google Scholar 

  • Berti AD, Thomas MG (2009) Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191(14):4594–4604. doi:10.1128/jb.00457-09

    Article  PubMed  CAS  Google Scholar 

  • Boye M, Nishioka J, Croot PL, Laan P, Timmermans KR, de Baar HJW (2005) Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in the open Southern Ocean. Mar Chem 96(3–4):257–271. doi:10.1016/j.marchem.2005.02.002

    Article  CAS  Google Scholar 

  • Bruland KW, Donat JR, Hutchins DA (1991) Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnol Oceanogr 36(8):1555–1577

    Article  CAS  Google Scholar 

  • Carrano CJ, Thieken A, Winkelmann G (1996) Specificity and mechanism of rhizoferrin-mediated metal ion uptake. Biometals 9(2):185–189

    Article  CAS  Google Scholar 

  • Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cochlan WP, Landry MR, Constantinou J, Rollwagen G, Trasvina A, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383(6600):495–501

    Article  PubMed  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14(6):1188–1190. doi:10.1101/gr.849004

    Article  PubMed  CAS  Google Scholar 

  • Enz S, Braun V, Crosa JH (1995) Transcription of the region encoding the ferric dicitrate-transport system in Escherichia coli: similarity between promoters for fecA and for extracytoplasmic function sigma factors. Gene 163(1):13–18. doi:10.1016/0378-1119(95)00380-o

    Article  PubMed  CAS  Google Scholar 

  • Escolar L, Perez-Martin J, de Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the fur protein. J Bacteriol 181(20):6223–6229

    PubMed  CAS  Google Scholar 

  • Ferreiros C, Criado MT, Gomez JA (1999) The neisserial 37 kDa ferric binding protein (FbpA). Comp Biochem Physiol B 123(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Glatz RE, Lepp PW, Ward BB, Francis CA (2006) Planktonic microbial community composition across steep physical/chemical gradients in permanently ice-covered Lake Bonney, Antarctica. Geobiology 4(1):53–67

    Article  CAS  Google Scholar 

  • Gledhill M, van den Berg CMG (1994) Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Mar Chem 47(1):41–54

    Article  CAS  Google Scholar 

  • Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJS (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47(3):345–357

    Article  PubMed  CAS  Google Scholar 

  • Hudson RJM, Morel FMM (1989) Distinguishing between extra- and intracellular iron in marine phytoplankton. Limnol Oceanogr 34(6):1113–1120

    Article  CAS  Google Scholar 

  • Kaeppel EC, Gärdes A, Seebah S, Grossart HP, Ullrich MS (2011) Marinobacter adhaerens sp. nov., prominent in aggregate formation with the diatom Thalassiosira weissflogii. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.030189-0

  • Kaye JZ, Sylvan JB, Edwards KJ, Baross JA (2011) Halomonas and Marinobacter ecotypes from hydrothermal vent, subseafloor and deep-sea environments. FEMS Microbiol Ecol 75(1):123–133. doi:10.1111/j.1574-6941.2010.00984.x

    Article  PubMed  CAS  Google Scholar 

  • Küpper FC, Carrano CJ, Kuhn J-U, Butler A (2006) Photoreactivity of iron(III)-aerobactin: photoproduct structure and iron(III) coordination. Inorg Chem 45(15):6028–6033

    Article  PubMed  Google Scholar 

  • Lau WWY, Keil RG, Armbrust EV (2007) Succession and diel transcriptional response of the glycolate-utilizing component of the bacterial community during a spring phytoplankton bloom. Appl Environ Microbiol 73(8):2440–2450. doi:10.1128/aem.01965-06

    Article  PubMed  CAS  Google Scholar 

  • Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000) Self-assembling amphiphilic siderophores from marine bacteria. Science 287(5456):1245–1247. doi:10.1126/science.287.5456.1245

    Article  PubMed  CAS  Google Scholar 

  • Milton D, O’Toole R, Horstedt P, Wolf-Watz H (1996) Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178(5):1310–1319

    PubMed  CAS  Google Scholar 

  • Romanenko LA, Schumann P, Rohde M, Zhukova NV, Mikhailov VV, Stackebrandt E (2005) Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55(Pt 1):143–148

    Article  PubMed  CAS  Google Scholar 

  • Rue EL, Bruland KW (1995) Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping voltammetric method. Mar Chem 50(1–4):117–138

    Article  CAS  Google Scholar 

  • Rue EL, Bruland KW (1997) The role of organic complexation on ambient iron chemistry in the equatorial Pacific Ocean and the response of a mesoscale iron addition experiment. Limnol Oceanogr 42(5):901–910

    Article  CAS  Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109(10):4580–4595. doi:10.1021/cr9002787

    Article  PubMed  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  PubMed  CAS  Google Scholar 

  • Seibold A, Wichels A, Schütt C (2001) Diversity of endocytic bacteria in the dinoflagellate Noctiluca scintillans. Aquat Microb Ecol 25(3):229–235. doi:10.3354/ame025229

    Article  Google Scholar 

  • Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science 327(5966):676–679. doi:10.1126/science.1183517

    Article  PubMed  CAS  Google Scholar 

  • Shouldice SR, Skene RJ, Dougan DR, McRee DE, Tari LW, Schryvers AB (2003) Presence of ferric hydroxide clusters in mutants of Haemophilus influenzae ferric ion-binding protein A. Biochemistry 42(41):11908–11914. doi:10.1021/bi035389s

    Article  PubMed  CAS  Google Scholar 

  • Strange HR, Zola TA, Cornelissen CN (2011) The fbpABC operon is required for ton-independent utilization of xenosiderophores by Neisseria gonorrhoeae strain FA19. Infect Immun 79(1):267–278. doi:10.1128/iai.00807-10

    Article  PubMed  CAS  Google Scholar 

  • Sunda WG (2010) Iron and the carbon pump. Science 327(5966):654–655. doi:10.1126/science.1186151

    Article  PubMed  CAS  Google Scholar 

  • Tanabe T, Funahashi T, Nakao H, Miyoshi S-I, Shinoda S, Yamamoto S (2003) Identification and characterization of genes required for biosynthesis and transport of the siderophore vibrioferrin in Vibrio parahaemolyticus. J Bacteriol 185(23):6938–6949. doi:10.1128/jb.185.23.6938-6949.2003

    Article  PubMed  CAS  Google Scholar 

  • Tortell PD, Maldonado MT, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol 29(1):1–11

    Article  CAS  Google Scholar 

  • Venturi V, Weisbeek P, Koster M (1995) Gene regulation of siderophore-mediated iron acquisition in Pseudomonas: not only the Fur repressor. Mol Microbiol 17(4):603–610

    Article  PubMed  CAS  Google Scholar 

  • Vraspir JM, Butler A (2009) Chemistry of marine ligands and siderophores. Annu Rev Mar Sci 1(1):43–63

    Article  Google Scholar 

  • Wu J, Luther GW (1995) Complexation of Fe(III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Mar Chem 50(1–4):159–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by NOAA Grants #NA04OAR4170038 and NA08OAR4170669, California Sea Grant College Program Project numbers R/CZ-198 and R/CONT-205 and NSF grant CHE-0924313. A.N.R. was supported at SDSU by National Institutes of Health, MBRS grant #2R25GM058906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Carrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, S.A., Green, D.H., Gärdes, A. et al. Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton: the role of light. Biometals 25, 181–192 (2012). https://doi.org/10.1007/s10534-011-9495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-011-9495-5

Keywords

Navigation