Skip to main content
Log in

Facile synthesis of W–Mo bimetallic oxides with high adsorption properties from secondary resources

  • Original Paper
  • Published:
Tungsten Aims and scope Submit manuscript

Abstract

A simple solvothermal method was used to obtain W–Mo bimetallic oxides from W–Mo alloy scrap, and pure metal powders were also used as the raw materials to simulate scrap. The products had a sea urchin-like structure with abundant oxygen vacancies and the products prepared at low temperatures forms a sosoloid resembling orthorhombic W0.4Mo0.6O3. The W–Mo bimetallic oxide prepared at the reaction temperature of 120 °C exhibited excellent selective adsorption performance for methylene blue (MB), which the adsorption rate of MB reached 99% in 12 min and the adsorption rate reached 90% after 6 adsorption cycles. When the W–Mo molar ratio is 1:3, the maximum adsorption capacity of sample for MB can reach 1148 mg‧g−1. The adsorption process followed the Langmuir and pseudo-second-order models, which is surface-controlled monolayer adsorption. The experimental results show the feasibility of preparing W–Mo bimetal oxide products from pure materials and scrap. The process is simple and effective, which offered a potential approach for secondary resource recycling and reusing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data generated during and/or analyzed in this article are available from the corresponding author on reasonable request.

References

  1. Kuang B, Yu ZQ. Current situation and suggestions on recycling and utilization of recycled tungsten resources in China. China Tungsten Ind. 2021;36(4):1. https://doi.org/10.3969/j.issn.1009-0622.2021.04.001.

    Article  Google Scholar 

  2. Ghadai B, Rout PC, Mohapatra D, Padh B, Reddy BR. Process development for the recovery of high grade calcium tungstate from alkaline leach liquor of spent HDS catalyst. Hydrometallurgy. 2020;191: 105237. https://doi.org/10.1016/j.hydromet.2019.105237.

    Article  CAS  Google Scholar 

  3. Du JW, Li J, He DM, Xu MY, Zhang GQ, Cao ZY, Wu SX. Green separation and recovery of molybdenum from tungstate solution achieved by using a recyclable vulcanizing agent. J Clean Prod. 2021;278: 123930. https://doi.org/10.1016/j.jclepro.2020.123930.

    Article  CAS  Google Scholar 

  4. Zou HY, Fang L, Yu G, Wang D. Nanocrystalline WSe2 excels at high-performance anode for Na storage via a facile one-pot hydrothermal method. Tungsten. 2022;6(1):248. https://doi.org/10.1007/s42864-022-00170-5.

    Article  Google Scholar 

  5. Yan NF, Cui HM, Shi JS, You SY, Liu S. Recent progress of W18O49 nanowires for energy conversion and storage. Tungsten. 2023;5(4):371. https://doi.org/10.1007/s42864-023-00202-8.

    Article  Google Scholar 

  6. Liu YN, Liu YS, Ma LW, Xi XL, Nie ZR. Preparation of W0.4Mo0.6O3 from secondary resources by a simple heat-treatment process and discussion of its superior selective adsorption properties. JOM. 2023;75:3455. https://doi.org/10.1007/s11837-023-05929-w.

    Article  CAS  Google Scholar 

  7. Holm RH, Solomon EI, Majumdar A, Tenderholt A. Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes. Coord Chem Rev. 2011;255(9–10):993. https://doi.org/10.1016/j.ccr.2010.10.017.

    Article  CAS  Google Scholar 

  8. Guo F, Xi XL, Ma LW, Nie ZR. Property and mechanism on sorption of molybdenum from tungstate solution with a porous amine resin. J Clean Prod. 2022;335: 130304. https://doi.org/10.1016/j.jclepro.2021.130304.

    Article  CAS  Google Scholar 

  9. Jin W, Zhang Y. Sustainable electrochemical extraction of metal resources from waste streams: from removal to recovery. ACS Sustain Chem Eng. 2020;8(12):4693. https://doi.org/10.1021/acssuschemeng.9b07007.

    Article  CAS  Google Scholar 

  10. Park K, Mohapatra D, Reddy B. Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method. J Hazard Mater. 2006;138(2):311. https://doi.org/10.1016/j.jhazmat.2006.05.115.

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen TH, Lee MS. Separation of molybdenum(VI) and tungsten(VI) from sulfate solutions by solvent extraction with LIX 63 and PC 88A. Hydrometallurgy. 2015;155:51. https://doi.org/10.1016/j.hydromet.2015.04.014.

    Article  CAS  Google Scholar 

  12. Liu FP, Hua R, Zhang F, Liu H, Lee CP, Liu HS, Xu B. Adsorption and separation of Re(VII) using trimethylamine-functionalized strong base anion exchange resin. J Radioanal Nucl Chem. 2020;326(1):445. https://doi.org/10.1007/s10967-020-07305-3.

    Article  CAS  Google Scholar 

  13. Hamza MF, Salih KAM, Abdel-Rahman AAH, Zayed YE, Wei Y, Liang J, Guibal E. Sulfonic-functionalized algal/PEI beads for scandium, cerium and holmium sorption from aqueous solutions (synthetic and industrial samples). Chem Eng J. 2021;403: 126399. https://doi.org/10.1016/j.cej.2020.126399.

    Article  CAS  Google Scholar 

  14. Jing QX, Wang YY, Chai LY, Tang CJ, Huang XD, Guo H, Wang W, You W. Adsorption of copper ions on porous ceramsite prepared by diatomite and tungsten residue. Trans Nonferrous Metals Soc China. 2018;28(5):1053. https://doi.org/10.1016/s1003-6326(18)64731-4.

    Article  CAS  Google Scholar 

  15. Su K, Ma XD, Zhao BJ. Harmless treatment and valuable metals recovery of tungsten leaching residues: a thermodynamic and experimental study. JOM. 2021;73(6):1937. https://doi.org/10.1007/s11837-021-04682-2.

    Article  CAS  Google Scholar 

  16. Zhang YK, Lei Y, Ma WH, Shi Z, Chen QS, Li ZC, Wang C. A green approach for simultaneously preparing Ti5Si3 and Ti5Si4–TiAl3 alloys using spent SCR catalyst, Ti-bearing blast furnace slag, and Al alloy scrap. Chem Eng J. 2022;430: 132916. https://doi.org/10.1016/j.cej.2021.132916.

    Article  CAS  Google Scholar 

  17. Adhikari S, Mandal S, Sarkar D, Kim DH, Madras G. Kinetics and mechanism of dye adsorption on WO3 nanoparticles. Appl Surf Sci. 2017;420:472. https://doi.org/10.1016/j.apsusc.2017.05.191.

    Article  CAS  Google Scholar 

  18. Zhang SY, Li H, Yang ZF. Controllable synthesis of WO3 with different crystalline phases and its applications on methylene blue removal from aqueous solution. J Alloy Compd. 2017;722:555. https://doi.org/10.1016/j.jallcom.2017.06.095.

    Article  CAS  Google Scholar 

  19. Wang K, Li JP, Liu XF, Cheng Q, Du Y, Li D, Wang GH, Liu B. Sacrificial-agent-free artificial photosynthesis of hydrogen peroxide over step-scheme WO3/NiS hybrid nanofibers. Appl Catal B. 2024;342: 123349. https://doi.org/10.1016/j.apcatb.2023.123349.

    Article  CAS  Google Scholar 

  20. Liu J, Wang SL, Xuan JL, Shan BF, Luo H, Deng LP, Yang P, Qi CZ. Preparation of tungsten–iron composite oxides and application in environmental catalysis for volatile organic compounds degradation. Tungsten. 2022;4(1):38. https://doi.org/10.1007/s42864-021-00128-z.

    Article  Google Scholar 

  21. Yin H, Kuwahara Y, Mori K. Localized surface plasmon resonances in plasmonic molybdenum tungsten oxide hybrid for visible-light-enhanced catalytic reaction. J Phys Chem C. 2017;121(42):23531. https://doi.org/10.1021/acs.jpcc.7b08403.

    Article  CAS  Google Scholar 

  22. Kashfi-Sadabad R, Yazdani S, Huan TD, Cai Z, Pettes MT. Role of oxygen vacancy defects in the electrocatalytic activity of substoichiometric molybdenum oxide. J Phys Chem C. 2018;122(32):18212. https://doi.org/10.1021/acs.jpcc.8b03536.

    Article  CAS  Google Scholar 

  23. Zhao LY, Xi XL, Liu YS, Ma LW, Nie ZR. Growth mechanism and visible-light-driven photocatalysis of organic solvent dependent WO3 and nonstoichiometric WO3x nanostructures. J Taiwan Inst Chem Eng. 2020;115:339. https://doi.org/10.1016/j.jtice.2020.10.031.

    Article  CAS  Google Scholar 

  24. Fan YS, Xi XL, Liu YS, Nie ZR, Zhang QH, Zhao LY. Growth mechanism of immobilized WO3 nanostructures in different solvents and their visible-light photocatalytic performance. J Phys Chem Solids. 2020;140: 109380. https://doi.org/10.1016/j.jpcs.2020.109380.

    Article  CAS  Google Scholar 

  25. Du Y, Chen WX, Zhong ZY, Wang SZ, Zhou L, Xiong DB, Liu YS, Liu ZH, Wang K. Bifunctional oxygen electrocatalysts with WN@Ni nanostructures implanted on N-doped carbon nanorods for rechargeable Zn-Air batteries. J Alloy Compd. 2023;960: 170789. https://doi.org/10.1016/j.jallcom.2023.170789.

    Article  CAS  Google Scholar 

  26. Liu Y, Dong XL, Yuan Q, Liang JS, Zhou YL, Qu XH, Dong B. In-situ synthesis of WO3–x/MoO3–x heterojunction with abundant oxygen vacancies for efficient photocatalytic reduction of CO2. Colloids Surf, A. 2021;621:126582. https://doi.org/10.1016/j.colsurfa.2021.126582.

    Article  CAS  Google Scholar 

  27. Yang GC, Pan QY, Yang P, Liu YS, Du Y, Wang K. Heteropolyacids supported on hierarchically macro/mesoporous TiO2: efficient catalyst for deep oxidative desulfurization of fuel. Tungsten. 2021;4(1):28. https://doi.org/10.1007/s42864-021-00125-2.

    Article  Google Scholar 

  28. Wang XL, Liu XT, Tong YP, Liu C, Ding YZ, Gao J, Fang GD, Zha XH, Wang YJ, Zhou DM. Oxygen vacancies-dominated reactive species generation from peroxymonosulfate activated by MoO3−x for pollutant degradation. J Hazard Mater. 2023;458: 131798. https://doi.org/10.1016/j.jhazmat.2023.131798.

    Article  CAS  PubMed  Google Scholar 

  29. Nosaka Y, Takahashi S, Sakamoto H, Nosaka AY. Reaction mechanism of Cu(II)-grafted visible-light responsive TiO2 and WO3 photocatalysts studied by means of ESR spectroscopy and chemiluminescence photometry. J Phys Chem C. 2011;115(43):21283. https://doi.org/10.1021/jp2070634.

    Article  CAS  Google Scholar 

  30. Wang JY, Liu YS, Xi XL, Nie ZR. Microwave-assisted synthesis of hierarchical WO3·H2O and its selective adsorption: kinetics, isotherm and mechanism. J Mater Sci. 2022;57(13):6881. https://doi.org/10.1007/s10853-022-06981-8.

    Article  CAS  Google Scholar 

  31. Wang C, Fan HQ, Ren XH, Fang JW, Ma JW, Zhao N. Porous graphitic carbon nitride nanosheets by pre-polymerization for enhanced photocatalysis. Mater Charact. 2018;139:89. https://doi.org/10.1016/j.matchar.2018.02.036.

    Article  CAS  Google Scholar 

  32. Shang YR, Cui YP, Shi RX, Yang P, Wang JP, Wang YZ. Regenerated WO2.72 nanowires with superb fast and selective adsorption for cationic dye: kinetics, isotherm, thermodynamics, mechanism. J Hazard Mater. 2019;379: 120834. https://doi.org/10.1016/j.jhazmat.2019.120834.

    Article  CAS  PubMed  Google Scholar 

  33. Li ZT, Liu DM, Cai YD, Wang YP, Teng J. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel. 2019;257: 116031. https://doi.org/10.1016/j.fuel.2019.116031.

    Article  CAS  Google Scholar 

  34. Farjood M, Zanjanchi MA. Template-free synthesis of mesoporous tungsten oxide nanostructures and its application in photocatalysis and adsorption reactions. ChemistrySelect. 2019;4(11):3042. https://doi.org/10.1002/slct.201804007.

    Article  CAS  Google Scholar 

  35. Muttakin M, Mitra S, Thu K, Ito K, Saha BB. Theoretical framework to evaluate minimum desorption temperature for IUPAC classified adsorption isotherms. Int J Heat Mass Transf. 2018;122:795. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.107.

    Article  CAS  Google Scholar 

  36. Cheng HF, Kamegawa T, Mori K, Yamashita H. Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light. Angew Chem Int Ed. 2014;53(11):2910. https://doi.org/10.1002/anie.201309759.

    Article  CAS  Google Scholar 

  37. Yin HB, Kuwahara Y, Mori K, Cheng HF, Wen MC, Yamashita H. High-surface-area plasmonic MoO3−x: rational synthesis and enhanced ammonia borane dehydrogenation activity. J Mater Chem A. 2017;5(19):8946. https://doi.org/10.1039/c7ta01217a.

    Article  CAS  Google Scholar 

  38. Tahmasebi N, Sezari S, Zaman P. Fabrication and characterization of hydrogen-treated tungsten oxide nanofibers for cationic dyes removal from water. Solid State Sci. 2020;100: 106073. https://doi.org/10.1016/j.solidstatesciences.2019.106073.

    Article  CAS  Google Scholar 

  39. Abdallah B, Hussein R, Al-Kafri N, Zetoun W. PbS thin films prepared by chemical bath deposition: effects of concentration on the morphology, structure and optical properties. Iran J Sci Technol, Trans A: Sci. 2019;43(3):1371. https://doi.org/10.1007/s40995-019-00698-1.

    Article  Google Scholar 

  40. Mohammed N, Lian H, Islam MS, Strong M, Shi ZQ, Berry RM, Yu HY, Tam KC. Selective adsorption and separation of organic dyes using functionalized cellulose nanocrystals. Chem Eng J. 2021;417: 129237. https://doi.org/10.1016/j.cej.2021.129237.

    Article  CAS  Google Scholar 

  41. Qiu JH, Feng Y, Zhang XF, Jia MM, Yao JF. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: adsorption performance and mechanisms. J Colloid Interface Sci. 2017;499:151. https://doi.org/10.1016/j.jcis.2017.03.101.

    Article  CAS  PubMed  Google Scholar 

  42. Eren Z, Acar F. Adsorption of reactive black 5 from an aqueous solution: equilibrium and kinetic studies. Desalination. 2006;194(1–3):1. https://doi.org/10.1016/j.desal.2005.10.022.

    Article  CAS  Google Scholar 

  43. de Sá ML, Nobre F, Silva LDS, Sousa GdS, Takeno ML, Júnior EAA, de Matos JME, de Santos MRMC. Preparation of new h-MoO3 rod-like microcrystals for effective removal of cationic dye in aqueous solution. Int J Environ Res. 2021;15(1):105. https://doi.org/10.1007/s41742-020-00301-1.

    Article  CAS  Google Scholar 

  44. Vamvasakis I, Georgaki I, Vernardou D, Kenanakis G, Katsarakis N. Synthesis of WO3 catalytic powders: evaluation of photocatalytic activity under NUV/visible light irradiation and alkaline reaction pH. J Sol–Gel Sci Technol. 2015;76(1):120. https://doi.org/10.1007/s10971-015-3758-5.

    Article  CAS  Google Scholar 

  45. Cai XX, Li J, Liu YG, Hu XJ. Design and preparation of chitosan-crosslinked bismuth Ferrite/Biochar coupled magnetic material for methylene blue removal. Int J Environ Res Public Health. 2019;17(1):6. https://doi.org/10.3390/ijerph17010006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ghasempour H, Zarekarizi F, Morsali A. Acyl amide-functionalized and water-stable iron-based MOF for rapid and selective dye removal. CrystEngComm. 2022;24(22):4074. https://doi.org/10.1039/d2ce00369d.

    Article  CAS  Google Scholar 

  47. Jaseela PK, Garvasis J, Joseph A. Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2)—poly vinyl alcohol (PVA) nanocomposite. J Mol Liq. 2019;286: 110908. https://doi.org/10.1016/j.molliq.2019.110908.

    Article  CAS  Google Scholar 

  48. Lei YT, Zhao JL, Song HM, Yang FH, Shen LL, Zhu LJ, Zeng ZX, Li XC, Wang G. Enhanced adsorption of dyes by functionalized UiO-66 nanoparticles: adsorption properties and mechanisms. J Mol Struct. 2023;1292: 136111. https://doi.org/10.1016/j.molstruc.2023.136111.

    Article  CAS  Google Scholar 

  49. Li H, Xie F, Li W, Fahlman BD, Chen MF, Li WJ. Preparation and adsorption capacity of porous MoS2 nanosheets. RSC Adv. 2016;6(107): 105222. https://doi.org/10.1039/c6ra22414h.

    Article  CAS  Google Scholar 

  50. Li YW, Yin XL, Huang XH, Tian J, Wu W, Liu XL. The novel and facile preparation of 2D MoS2@C composites for dye adsorption application. Appl Surf Sci. 2019;495: 143626. https://doi.org/10.1016/j.apsusc.2019.143626.

    Article  CAS  Google Scholar 

  51. Nayak AK, Lee S, Choi YI, Yoon HJ, Sohn Y, Pradhan D. Crystal phase and size-controlled synthesis of tungsten trioxide hydrate nanoplates at Room temperature: enhanced Cr(VI) photoreduction and methylene blue adsorption properties. ACS Sustain Chem Eng. 2017;5(3):2741. https://doi.org/10.1021/acssuschemeng.6b03084.

    Article  CAS  Google Scholar 

  52. Chatterjee A, Jana A, Basu J. A novel synthesis of MIL-53(Al)@SiO2: an integrated photocatalyst adsorbent to remove bisphenol a from wastewater. New J Chem. 2020;44(43):18892. https://doi.org/10.1039/d0nj03714a.

    Article  CAS  Google Scholar 

  53. Li LF, Jiang DX, Wu XL, Sun X. 2D/2D WO3·H2O/g-C3N4 heterostructured assemblies for enhanced photocatalytic water decontamination via strong interfacial contact. J Mater Sci. 2019;55(10):4238. https://doi.org/10.1007/s10853-019-04264-3.

    Article  CAS  Google Scholar 

  54. Pacheco ML, Pinto TV, Sousa CM, Guedes A, Blanco G, Pintado JM, Coelho PJ, Freire C, Pereira CR. Tuning the photochromic properties of WO3-based materials toward high-performance light-responsive textiles. ACS Appl Opt Mater. 2023;1(8):1434. https://doi.org/10.1021/acsaom.3c00188.

    Article  CAS  Google Scholar 

  55. Du XD, Wang CC, Liu JG, Zhao XD, Zhong J, Li YX, Li J, Wang P. Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism. J Colloid Interface Sci. 2017;506:437. https://doi.org/10.1016/j.jcis.2017.07.073.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China for Distinguished Young Scholar (No. 52025042), the National Natural Science Foundation of China (No.51702008), Beijing Natural Science Foundation (No.2202010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang-Si Liu or Xiao-Li Xi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3942 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, JL., Liu, YS., Xi, XL. et al. Facile synthesis of W–Mo bimetallic oxides with high adsorption properties from secondary resources. Tungsten (2024). https://doi.org/10.1007/s42864-024-00272-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42864-024-00272-2

Keywords

Navigation