Skip to main content

Advertisement

Log in

Preparation of self-supporting Co3S4/S-rGO film catalyst for efficient oxygen evolution reaction

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Exploring cheap and efficient oxygen evolution reaction (OER) catalysts is extremely vital for the commercial application of advanced energy storage and conversion systems. Herein, a self-supporting Co3S4/S-doped reduced graphene oxide (Co3S4/S-rGO) film catalyst is successfully prepared by a blade coating coupled with high-temperature annealing strategy, and its morphology, structure and composition are measured and analyzed. It is substantiated that the as-synthesized Co3S4/S-rGO film possesses unique self-supporting structure, and is composed of uniformly dispersed Co3S4 nanoparticles and highly conductive S-rGO, which benefit the exposure of catalytic sites and electron transfer. By reason of the synergistic effect of the two individual components, the self-supporting Co3S4/S-rGO film catalyst displays outstanding catalytic performance towards OER. As a consequence, the Co3S4/S-rGO film catalyst delivers an overpotential of 341 mV at 10 mA cm-2, and the current attenuation rate is only 2.6% after continuous operation for 4 h, verifying excellent catalytic activity and durability. Clearly, our results offers a good example for the construction of high-performance self-supporting carbon-based composite film catalysts for critical electrocatalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Some of the data used in this work is confidential.

References

  1. Deng FX, Jiang JZ, Sires I (2023) State-of-the-art review and bibliometric analysis on electro-Fenton process. Carbon Lett 33:17–34. https://doi.org/10.1007/s42823-022-00420-z

    Article  Google Scholar 

  2. Deng YH, Ye C, Tao BX, Chen G, Zhang Q, Luo HQ, Li NB (2018) One-step chemical transformation synthesis of CoS2 nanosheets on carbon cloth as a 3D flexible electrode for water oxidation. J Power Sources 397:44–51. https://doi.org/10.1016/j.jpowsour.2018.06.094

    Article  CAS  Google Scholar 

  3. Jang S, Kim J, Na E, Song MY, Choi J, Song KH, Baeck SH, Shim SE (2019) Facile synthesis of mesoporous and highly nitrogen/sulfur dual-doped graphene and its ultrahigh discharge capacity in non-aqueous lithium oxygen batteries. Carbon Lett 29:297–305. https://doi.org/10.1007/s42823-019-00026-y

    Article  Google Scholar 

  4. Mahala C, Sharma MD, Basu M (2019) Core@shell hollow heterostructure of Co3O4 and Co3S4: an efficient oxygen evolution catalyst. New J Chem 43:15768–15776. https://doi.org/10.1039/C9NJ03623G

    Article  CAS  Google Scholar 

  5. Jiang JC, Liu JM, Piao YG, Zhang MS, Meng LY (2023) Nickel-based N/S-dual doped graphene/carbon nanotubes electrocatalyst for oxygen evolution. Carbon Lett 33:89–97. https://doi.org/10.1007/s42823-022-00405-y

    Article  Google Scholar 

  6. Zou J, Zou YL, Wang HT, Wang W, Xu PX, Arramel A, Jiang JZ, Li X (2023) Tailoring the electronic acceptor–donor heterointerface between black phosphorus and Co3O4 for boosting oxygen bifunctional electrocatalysis. Chin Chem Lett 34:107378. https://doi.org/10.1016/j.cclet.2022.03.101

    Article  CAS  Google Scholar 

  7. Yang M, Zou YL, Ding L, Yu Y, Ma JN, Li L, Rafryanto AF, Zou J, Arramel WHT (2023) TiO2 nanoparticles anchored on graphene oxide nanosheets as a highly active photocatalyst for decabromodiphenyl ether degradation. Carbon Lett. https://doi.org/10.1007/s42823-022-00456-1

    Article  Google Scholar 

  8. Wang HT, Qiu XY, Peng Z, Wang W, Wang JL, Zhang TS, Jiang LP, Liu HF (2020) Cobalt-gluconate-derived high-density cobalt sulfides nanocrystals encapsulated within nitrogen and sulfur dual-doped micro/mesoporous carbon spheres for efficient electrocatalysis of oxygen reduction. J Colloid Interface Sci 561:829–837. https://doi.org/10.1016/j.jcis.2019.11.065

    Article  CAS  Google Scholar 

  9. Li XM, Zheng KT, Zhang JJ, Li GN, Xu CJ (2022) Engineering sulfur vacancies in spinel-phase Co3S4 for effective electrocatalysis of the oxygen evolution reaction. ACS Omega 7:12430–12441. https://doi.org/10.1021/acsomega.2c01423

    Article  CAS  Google Scholar 

  10. Huang G, Xiao ZH, Chen R, Wang SY (2018) Defect engineering of cobalt-based materials for electrocatalytic water splitting. ACS Sustainable Chem Eng 6:15954–15969. https://doi.org/10.1021/acssuschemeng.8b04397

    Article  CAS  Google Scholar 

  11. Liu SL, Che CJ, Jing HY, Zhao J, Mu XQ, Zhang SD, Chen CY, Mu SC (2020) Phosphorus-triggered synergy of phase transformation and chalcogenide vacancy migration in cobalt sulfide for an efficient oxygen evolution reaction. Nanoscale 12:3129–3134. https://doi.org/10.1039/C9NR09203J

    Article  CAS  Google Scholar 

  12. Zhu JQ, Ren ZY, Du SC, Xie Y, Wu J, Meng HY, Xue YZ, Fu HG (2017) Co-vacancy-rich Co1−xS nanosheets anchored on rGO for high-efficiency oxygen evolution. Nano Res 10:1819–1831. https://doi.org/10.1007/s12274-017-1511-9

    Article  CAS  Google Scholar 

  13. Liu YP, Xu CX, Ren WQ, Hu LY, Fu WB, Wang W, Yin H, He BH, Hou ZH, Chen L (2023) Self-template synthesis of peapod-like MnO@N-doped hollow carbon nanotubes as an advanced anode for lithium-ion batteries. Rare Met 42:929–939. https://doi.org/10.1007/s12598-022-02203-x

    Article  CAS  Google Scholar 

  14. Li Z, Wang W, Zhou MJ, He BH, Ren WQ, Chen L, Xu WY, Hou ZH, Chen YY (2021) In-situ self-templated preparation of porous core–shell Fe1-xS@N, S co-doped carbon architecture for highly efficient oxygen reduction reaction. J Energy Chem 54:310–317. https://doi.org/10.1016/j.jechem.2020.06.010

    Article  CAS  Google Scholar 

  15. Yang M, Chen YY, Wang HT, Zou YL, Wu PX, Zou J, Jiang JZ (2022) Solvothermal preparation of CeO2 nanoparticles–graphene nanocomposites as an electrochemical sensor for sensitive detecting pentachlorophenol. Carbon Lett 32:1277–1285. https://doi.org/10.1007/s42823-022-00353-7

    Article  Google Scholar 

  16. Wang JM, Qin Q, Li FY, Anjarsari YLT, Sun W, Azzahiidah R, Zou J, Xiang K, Ma HJ, Jiang JZ (2022) Recent advances of MXenes Mo2C-based materials for efficient photocatalytic hydrogen evolution reaction. Carbon Lett. https://doi.org/10.1007/s42823-022-00401-2

    Article  Google Scholar 

  17. Jiang JZ, Bai SS, Yang MQ, Zou J, Li N, Peng JH, Wang HT, Xiang K, Liu S, Zhai TY (2022) Strategic design and fabrication of MXenes–Ti3CNCl2@CoS2 core–shell nanostructure for high-efficiency hydrogen evolution. Nano Res 15:5977–5986. https://doi.org/10.1007/s12274-022-4276-8

    Article  CAS  Google Scholar 

  18. Zou J, Wu SL, Liu Y, Sun YJ, Cao Y, Hsu JP, Wee ATS, Jiang JZ (2018) An ultra-sensitive electrochemical sensor based on 2D g-C3N4/CuO nanocomposites for dopamine detection. Carbon 130:652–663. https://doi.org/10.1016/j.carbon.2018.01.008

    Article  CAS  Google Scholar 

  19. Prabakaran K, Lokanathan M, Kakade B (2019) Three-dimensional flower like cobalt sulfide (CoS)/functionalized MWCNT composite catalyst for efficient oxygen evolution reactions. Appl Surf Sci 466:830–836. https://doi.org/10.1016/j.apsusc.2018.10.015

    Article  CAS  Google Scholar 

  20. Yang JZ, Yang Z, Li LH, Cai QR, Nie HG, Ge MZ, Chen XA, Chen Y, Huang SM (2017) Highly efficient oxygen evolution from CoS2/CNTs nanocomposite via one-step electrochemical deposition and dissolution method. Nanoscale 9:6886–6894. https://doi.org/10.1039/C7NR01293D

    Article  CAS  Google Scholar 

  21. Yang HY, Driess M, Menezes PW (2021) Self-supported electrocatalysts for practical water electrolysis. Adv Energy Mater 11:2102074. https://doi.org/10.1002/aenm.202102074

    Article  CAS  Google Scholar 

  22. Chen L, Hu LY, Xu CX, Yang LY, Ren WQ, Wang W, Li GY, Zhu YC, Hou ZH (2022) Flexible self-supporting metal-free N-doped graphene membrane as an electrocatalyst for oxygen evolution reaction. Appl Surf Sci 604:154667. https://doi.org/10.1016/j.apsusc.2022.154667

    Article  CAS  Google Scholar 

  23. Li XY, Duan FY, Deng MR, Zheng WL, Lin YY, Dan YY, Cheng XF, Chen LZ (2022) Effect of Fe doping on Co-S/carbon cloth as bifunctional electrocatalyst for enhanced water splitting. J Electroanal Chem 922:116723. https://doi.org/10.1016/j.jelechem.2022.116723

    Article  CAS  Google Scholar 

  24. Yan YX, Shin WI, Chen H, Lee SM, Manickam S, Hanson S, Zhao HT, Lester E, Wu T, Pang CH (2021) A recent trend: application of graphene in catalysis. Carbon Lett 31:177–199. https://doi.org/10.1007/s42823-020-00200-7

    Article  Google Scholar 

  25. Jiang JZ, Ou-yang L, Zhu LH, Zheng AM, Zou J, Yi XF, Tang HQ (2014) Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80:213–221. https://doi.org/10.1016/j.carbon.2014.08.059

    Article  CAS  Google Scholar 

  26. Bai SS, Yang MQ, Jiang JZ, He XM, Zou J, Xiong ZG, Liao GD, Liu S (2021) Recent advances of MXenes as electrocatalysts for hydrogen evolution reaction. NPJ 2D Mater Appl 5:78. https://doi.org/10.1038/s41699-021-00259-4

  27. Jiang JZ, Xiong ZG, Wang HT, Liao GD, Bai SS, Zou J, Wu PX, Zhang P, Li X (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24. https://doi.org/10.1016/j.jmst.2021.12.018

    Article  CAS  Google Scholar 

  28. Li FY, Anjarsari YLT, Wang JM, Azzahiidah R, Jiang JZ, Zou J, Xiang K, Ma HJ, Arramel, (2022) Modulation of the lattice structure of 2D carbon-based materials for improving photo/electric properties. Carbon Lett. https://doi.org/10.1007/s42823-022-00380-4

    Article  Google Scholar 

  29. Alam SN, Sharma N, Kumar L (2017) Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6:1–18. https://doi.org/10.4236/graphene.2017.61001

    Article  CAS  Google Scholar 

  30. Phuc NT, Giang NTH, An VNTT, Nam NTH, Anh LD, Nguyen HC, An H, Phong MT, Hieu NH (2023) Optimization of the eco-friendly synthesis of graphene oxide from graphite using Plackett–Burman and Box–Behnken models for industrial production orientation. Carbon Lett 33:489–500. https://doi.org/10.1007/s42823-022-00439-2

    Article  Google Scholar 

  31. Tao RM, Wang T, Fan JT, Meyer HM, Borisevich AY, Do-Thanh CL, Dai S (2022) Ionothermal synthesis of carbon/TiO2 nanocomposite for supercapacitors. ChemNanoMat 8:e202200075. https://doi.org/10.1002/cnma.202200075

    Article  CAS  Google Scholar 

  32. Li Z, Cao YJ, Li YG, Chen L, Xu WY, Zhou MJ, He BH, Wang W, Hou ZH (2021) High rate capability of S-doped ordered mesoporous carbon materials with directional arrangement of carbon layers and large d-spacing for sodium-ion battery. Electrochim Acta 366:137466. https://doi.org/10.1016/j.electacta.2020.137466

    Article  CAS  Google Scholar 

  33. Chen L, Shi MT, He BH, Zhou MJ, Xu CX, Chen ZG, Kuang YF (2019) Effect of two-step doping pathway on the morphology, structure, composition, and electrochemical performance of three-dimensional N, S-co doped graphene framework. J Mater Res 34:1993–2002. https://doi.org/10.1557/jmr.2019.107

    Article  CAS  Google Scholar 

  34. Chen L, Chen YY, Xu CX, Wang W, Fu WQ, Hu Q, Zhou MJ, He BH, Chen Q, Hou ZH, Xu WY (2021) Etching engineering on controllable synthesis of etched N-doped hierarchical porous carbon toward efficient oxygen reduction reaction in zinc–air batteries. Mater Today Energy 20:100670. https://doi.org/10.1016/j.mtener.2021.100670

    Article  CAS  Google Scholar 

  35. Tabrizi AG, Arsalani N, Naghshbandi Z, Ghadimi LS, Mohammadi A (2018) Growth of polyaniline on rGO‒Co3S4 nanocomposite for high‒performance supercapacitor energy storage. Int J Hydrogen Energy 43:12200‒12210. https://doi.org/10.1016/j.ijhydene.2018.04.129

  36. Nandhini S, Muralidharan G (2021) Co3S4-CoS/rGO hybrid nanostructure: promising material for high-performance and high-rate capacity supercapacitor. J Solid State Electrochem 25:465–477. https://doi.org/10.1007/s10008-020-04824-7

    Article  CAS  Google Scholar 

  37. Wu ZX, Fan LQ, Chen JJ, Deng XG, Tang T, Huang YF, Wu JH (2022) Two-step hydrothermal synthesis of a fireworks-like amorphous Co3S4 for asymmetric supercapacitors with superior cycling stability. Electrochim Acta 426:140777. https://doi.org/10.1016/j.electacta.2022.140777

    Article  CAS  Google Scholar 

  38. Yin PF, Sun LL, Han XY, Xia CH, Wu HY, Wang F (2016) Controlled synthesis of cobalt sulfide nanocrystalline by ultrasonic spray pyrolysis process. Rare Met Mater Eng 45:1700–1704. https://doi.org/10.1016/S1875-5372(16)30143-6

    Article  CAS  Google Scholar 

  39. Behrad Vakylabad A, Darezereshki E, Hassanzadeh A (2021) Selective recovery of cobalt and fabrication of nano-Co3S4 from Pregnant leach solution of spent lithium-ion batteries. J Sustainable Metall 7:1027–1044. https://doi.org/10.1007/s40831-021-00393-9

    Article  Google Scholar 

  40. Andrijanto E, Shoelarta S, Subiyanto G, Rifki S (2016) Facile synthesis of graphene from graphite using ascorbic acid as reducing agent. AIP Conf Proc AIP Publ LLC 1725:020003. https://doi.org/10.1063/1.4945457

    Article  Google Scholar 

  41. Abza T, Dadi DG, Hone FG, Meharu TC, Tekle G, Abebe EB, Ahmed KS (2020) Characterization of cobalt sulfide thin films synthesized from acidic chemical baths. Adv Mater Sci Eng 2020:1–9. https://doi.org/10.1155/2020/2628706

    Article  CAS  Google Scholar 

  42. Chauhan M, Deka S (2019) Hollow cobalt sulfide nanoparticles: a robust and low-cost pH-universal oxygen evolution electrocatalyst. ACS Appl Energy Mater 3:977–986. https://doi.org/10.1021/acsaem.9b02019

    Article  CAS  Google Scholar 

  43. Zhu XJ, Dai JL, Li LG, Zhao DK, Wu ZX, Tang ZH, Ma LJ, Chen SW (2020) Hierarchical carbon microflowers supported defect-rich Co3S4 nanoparticles: an efficient electrocatalyst for water splitting. Carbon 160:133–144. https://doi.org/10.1016/j.carbon.2019.12.072

    Article  CAS  Google Scholar 

  44. Zhang GJ, Tang FY, Wang LQ, Yang WJ, Liu YN (2021) ZIF-67 derived CoSx/NC catalysts for selective reduction of nitro compounds. J Cent South Univ 28:1279–1290. https://doi.org/10.1007/s11771-021-4696-8

    Article  CAS  Google Scholar 

  45. Li JL, Wang X, Li Q, Li HS, Xu J, Li XY, Han ZY, Duo YW, Huang H, Li SD (2021) Co3S4 nanosheets on carbon cloth as free-standing anode with improved pseudocapacitive storage for high-performance Li-ion batteries. NANO 16:2150007. https://doi.org/10.1142/S1793292021500077

    Article  CAS  Google Scholar 

  46. Zhang G, Wang P, Lu WT, Wang CY, Li YK, Ding C, Gu JJ, Zheng XS, Cao FF (2017) Co nanoparticles/Co, N, S tri-doped graphene templated from in-situ-formed Co, S Co-doped g-C3N4 as an active bifunctional electrocatalyst for overall water splitting. ACS Appl Mater Interfaces 9:28566–28576. https://doi.org/10.1021/acsami.7b08138

    Article  CAS  Google Scholar 

  47. Mohammadi A, Arsalani N, Tabrizi AG, Moosavifard SE, Naqshbandi Z, Ghandimi LS (2018) Engineering rGO-CNT wrapped Co3S4 nanocomposites for high-performance asymmetric supercapacitors. Chem Eng J 334:66–80. https://doi.org/10.1016/j.cej.2017.10.029

    Article  CAS  Google Scholar 

  48. Pu J, Shen ZH, Zheng JX, Wu WL, Zhu C, Zhou QW, Zhang HG, Pan F (2017) Multifunctional Co3S4@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy 37:7–14. https://doi.org/10.1016/j.nanoen.2017.05.009

    Article  CAS  Google Scholar 

  49. Kim IT, Lee J, An JC, Jung E, Lee HK, Morita M, Shim J (2016) Capacity improvement of tin-deposited on carbon-coated graphite anode for rechargeable lithium-ion batteries. Int J Electrochem Sci 11:5807‒5818. https://doi.org/10.20964/2016.07.15

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51972109), Science & Technology Talents Lifting Project of Hunan Province (No. 2022TJ‒N16), Natural Science Foundation of Hunan Province China (No.2023JJ30277), the Scientific Research Fund of Hunan Provincial Education Department, China (No. 21A0392, 21B0591), the Science and Technology Innovation Program of Hunan Province (No.2022RC3037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junlin Huang or Minjie Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 3711 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Hu, L., Xu, C. et al. Preparation of self-supporting Co3S4/S-rGO film catalyst for efficient oxygen evolution reaction. Carbon Lett. 33, 2087–2094 (2023). https://doi.org/10.1007/s42823-023-00561-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-023-00561-9

Keywords

Navigation