Skip to main content

Advertisement

Log in

Polyaniline-modified graphitic carbon nitride as electrode materials for high-performance supercapacitors

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Graphitic carbon nitride (g-C3N4) has attracted extensive attention in energy storage due to its suitable and tunable bandgap, high chemical/thermal stability, earth abundance and environmental friendliness. However, its conductivity should be improved to work as the electrode materials in supercapacitors. In this report, we have prepared a two-dimensional composite (CN-PANI) based on g-C3N4 and polyaniline (PANI) by in-situ polymerization, which can be efficiently applied as electrode material for supercapacitors. The introduction of PANI can increase the conductivity of the electrode, and the porous structure of g-C3N4 can provide enough channels for the transport of electrolyte ions and improve the electrode stability. As a result, the obtained CN-PANI demonstrates excellent specific capacitance (234.0 F g−1 at 5 mV/s), good rate performance and high cycling stability (86.2% after 10,000 cycles at 50 mV/s), showing great potential for high-rate supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  2. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  CAS  Google Scholar 

  3. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  4. Lin D, Liu Y, Cui Y (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12(3):194–206

    Article  CAS  Google Scholar 

  5. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  Google Scholar 

  6. Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285

    Article  CAS  Google Scholar 

  7. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  8. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  9. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  CAS  Google Scholar 

  10. Zhang L, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  Google Scholar 

  11. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23(42):4828–4850

    Article  CAS  Google Scholar 

  12. Kang CS, Il KY, Fujisawa K, Yokokawa T, Kim JH, Han JH, Wee JH, Kim YA, Muramatsu H, Hayashi T (2020) Hybridized double-walled carbon nanotubes and activated carbon as free-standing electrode for flexible supercapacitor applications. Carbon Lett 30(5):527–534

    Article  Google Scholar 

  13. Cheng J, Lu Z, Zhao X, Chen X, Zhu Y, Chu H (2021) Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials. Carbon Lett 31(1):57–65

    Article  Google Scholar 

  14. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube- and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141:467–480

    Article  CAS  Google Scholar 

  15. Xu J, Peng T, Qin X, Zhang Q, Liu T, Dai W, Chen B, Yu H, Shi S (2021) Recent advances in 2D MXenes: preparation, intercalation and applications in flexible devices. J Mater Chem A 9(25):14147–14171

    Article  CAS  Google Scholar 

  16. Xu J, Peng T, Zhang Q, Zheng H, Yu H, Shi S (2022) Intercalation effects on the electrochemical properties of Ti3C2TxMXene nanosheets for high-performance supercapacitors. ACS Appl Nano Mater 5(7):8794–8803

    Article  CAS  Google Scholar 

  17. Vargheese S, Dinesh M, Kavya KV, Pattappan D, Rajendra Kumar RT, Haldorai Y (2021) Triazine-based 2D covalent organic framework-derived nitrogen-doped porous carbon for supercapacitor electrode. Carbon Lett 31(5):879–886

    Article  Google Scholar 

  18. Jung HY, Kim YR, Jeong HT (2020) All-solid-state supercapacitor composed of reduced graphene oxide (rGO)/activated carbon (AC) composite and polymer electrolyte. Carbon Lett 30(1):107–113

    Article  Google Scholar 

  19. Yang B, Zhang D, He J, Wang Y, Wang K, Li H, Wang Y, Miao L, Ren R, Xie M (2020) Simple and green fabrication of a biomass-derived N and O self-doped hierarchical porous carbon via a self-activation route for supercapacitor application. Carbon Lett 30(6):709–719

    Article  Google Scholar 

  20. Jeong HT (2020) Electrochemical performances of semi-transparent and stretchable supercapacitor composed of nanocarbon materials. Carbon Lett 30(1):55–61

    Article  Google Scholar 

  21. Yan R, Wang K, Tian X, Li X, Yang T, Xu X, He Y, Lei S, Song Y (2020) Heteroatoms in situ-doped hierarchical porous hollow-activated carbons for high-performance supercapacitor. Carbon Lett 30(3):331–344

    Article  Google Scholar 

  22. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614

    Article  CAS  Google Scholar 

  23. Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131

    Article  CAS  Google Scholar 

  24. Xu B, Zhang H, Mei H, Sun D (2020) Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord Chem Rev 420:213438

    Article  CAS  Google Scholar 

  25. Vargheese S, Pattappan D, Kavya KV, Sivaramkumar MS, Kumar RTR, Haldorai Y (2021) Heteroatom-doped mesoporous carbon prepared from a covalent organic framework/α-MnO2 composite for high-performance supercapacitor. Carbon Lett 31(6):1309–1316

    Article  Google Scholar 

  26. Shown I, Ganguly A, Chen LC, Chen KH (2015) Conducting polymer-based flexible supercapacitor. Energy Sci Eng 3(1):2–26

    Article  CAS  Google Scholar 

  27. Cheng M, Meng YN, Wei ZX (2018) Conducting polymer nanostructures and their derivatives for flexible supercapacitors. Isr J Chem 58(12):1299–1314

    Article  CAS  Google Scholar 

  28. Peng Q, Chen J, Wang T, Peng X, Liu J, Wang X, Wang J, Zeng H (2020) Recent advances in designing conductive hydrogels for flexible electronics. InfoMat 2(5):843–865

    Article  CAS  Google Scholar 

  29. Oskueyan G, Mansour Lakouraj M, Mahyari M (2021) Fabrication of polyaniline–carrot derived carbon dots/polypyrrole–graphene nanocomposite for wide potential window supercapacitor. Carbon Lett 31(2):269–276

    Article  Google Scholar 

  30. Liu G, Shi Y, Wang L, Song Y, Gao S, Liu D, Fan L (2020) Reduced graphene oxide/polypyrrole composite: an advanced electrode for high-performance symmetric/asymmetric supercapacitor. Carbon Lett 30(4):389–397

    Article  CAS  Google Scholar 

  31. Katsumata H, Higashi F, Kobayashi Y, Tateishi I, Furukawa M, Kaneco S (2019) Dual-defect-modified graphitic carbon nitride with boosted photocatalytic activity under visible light. Sci Rep 9(1):14873

    Article  Google Scholar 

  32. Idris MB, Devaraj S (2019) Few-layered mesoporous graphitic carbon nitride: a graphene analogue with high capacitance properties. New J Chem 43(29):11626–11635

    Article  CAS  Google Scholar 

  33. Idris MB, Sakthivel G, Devaraj S (2018) Textural properties dependent supercapacitive performances of mesoporous graphitic carbon nitride. Mater Today Energy 10:325–335

    Article  Google Scholar 

  34. Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M (2009) Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J Am Chem Soc 131(5):1680–1681

    Article  CAS  Google Scholar 

  35. Jiang J, Xiong Z, Wang H, Liao G, Bai S, Zou J, Wu P, Zhang P, Li X (2022) Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution. J Mater Sci Technol 118:15–24

    Article  Google Scholar 

  36. Zou J, Liao G, Jiang J, Xiong Z, Bai S, Wang H, Wu P, Zhang P, Li X (2022) In-situ construction of sulfur-doped g-C3N4/defective g-C3N4Isotype step-scheme heterojunction for boosting photocatalytic H2Evolution. Chin J Struct Chem 41(1):2201025–2201033

    CAS  Google Scholar 

  37. Zou J, Liao G, Wang H, Ding Y, Pingxiu Wu, Jyh-Ping Hsu JJ (2022) Controllable interface engineering of g-C3N4_CuS nanocomposite photocatalysts. J Alloys Compd 911:165020

    Article  CAS  Google Scholar 

  38. Kumar A, Khanuja M (2021) Template-free graphitic carbon nitride nanosheets coated with polyaniline nanofibers as an electrode material for supercapacitor applications. Renew Energy 171:1246–1256

    Article  CAS  Google Scholar 

  39. Nawas Mumthas IN, Mohamad Noh MF, Arzaee NA, Mohamed NA, Mohd Nasir SNF, Alessa H, Ismail AF, Moria H, Mat Teridi MA (2021) Improving the stability and efficiency of polymer solar cells by γ-radiated graphitic carbon nitride. Int J Energy Res 45(10):15284–15297

    Article  CAS  Google Scholar 

  40. Chen X, Liu Q, Wu Q, Du P, Zhu J, Dai S, Yang S (2016) Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement. Adv Funct Mater 26(11):1719–1728

    Article  CAS  Google Scholar 

  41. Lu C, Yang Y, Chen X (2019) Ultra-thin conductive graphitic carbon nitride assembly through van der Waals epitaxy toward high-energy-density flexible supercapacitors. Nano Lett 19(6):4103–4111

    Article  CAS  Google Scholar 

  42. Cao Q, Kumru B, Antonietti M, Schmidt BVKJ (2020) Graphitic carbon nitride and polymers: a mutual combination for advanced properties. Mater Horizons 7(3):762–786

    Article  CAS  Google Scholar 

  43. Ahirrao DJ, Pal AK, Singh V, Jha N (2021) Nanostructured porous polyaniline (PANI) coated carbon cloth (CC) as electrodes for flexible supercapacitor device. J Mater Sci Technol 88:168–182

    Article  CAS  Google Scholar 

  44. Eftekhari A, Li L, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107

    Article  CAS  Google Scholar 

  45. Chen X, Zhu X, Xiao Y, Yang X (2015) PEDOT/g-C3N4 binary electrode material for supercapacitors. J Electroanal Chem 743:99–104

    Article  CAS  Google Scholar 

  46. Tang Z, Zhang X, Duan L, Wu A, Lü W (2019) Three-dimensional carbon nitride nanowire scaffold for flexible supercapacitors. Nanoscale Res Lett 14:98

    Article  Google Scholar 

  47. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J Mater Chem 21(38):14398–14401

    Article  CAS  Google Scholar 

  48. Ding Y, Tang Y, Yang L, Zeng Y, Yuan J, Liu T, Zhang S, Liu C, Luo S (2016) Porous nitrogen-rich carbon materials from carbon self-repairing g-C3N4 assembled with graphene for high-performance supercapacitor. J Mater Chem A 4(37):14307–14315

    Article  CAS  Google Scholar 

  49. Zhou SX, Tao XY, Ma J, Guo LT, Zhu YB, Fan HL, Liu ZS, Wei XY (2018) Synthesis of flower-like PANI/g-C3N4 nanocomposite as supercapacitor electrode. Vacuum 149:175–179

    Article  CAS  Google Scholar 

  50. Zhang L, Liu D, Guan J, Chen X, Guo X, Zhao F, Hou T, Mu X (2014) Metal-free g-C3N4 photocatalyst by sulfuric acid activation for selective aerobic oxidation of benzyl alcohol under visible light. Mater Res Bull 59:84–92

    Article  CAS  Google Scholar 

  51. Zhang Y, Gong H, Li G, Zeng H, Zhong L, Liu K, Cao H, Yan H (2017) Synthesis of graphitic carbon nitride by heating mixture of urea and thiourea for enhanced photocatalytic H2 production from water under visible light. Int J Hydrogen Energy 42(1):143–151

    Article  CAS  Google Scholar 

  52. Kavil J, Anjana PM, Periyat P, Rakhi RB (2018) One-pot synthesis of g-C3N4/MnO2 and g-C3N4/SnO2 hybrid nanocomposites for supercapacitor applications. Sustain Energy Fuels 2(10):2244–2251

    Article  CAS  Google Scholar 

  53. Oh T, Kim M, Choi J, Kim J (2018) Design of graphitic carbon nitride nanowires with captured mesoporous carbon spheres for EDLC electrode materials. Ionics 24(12):3957–3965

    Article  CAS  Google Scholar 

  54. Gonçalves R, Lima TM, Paixão MW, Pereira EC (2018) Pristine carbon nitride as active material for high-performance metal-free supercapacitors: simple, easy and cheap. RSC Adv 8(61):35327–35336

    Article  Google Scholar 

  55. Guan B, Shan QY, Chen H, Xue D, Chen K, Zhang YX (2016) Morphology dependent supercapacitance of nanostructured NiCo2O4 on graphitic carbon nitride. Electrochim Acta 200:239–246

    Article  CAS  Google Scholar 

  56. Zhao Y, Xu L, Huang S, Bao J, Qiu J, Lian J, Xu L, Huang Y, Xu Y, Li H (2017) Facile preparation of TiO2/C3N4hybrid materials with enhanced capacitive properties for high performance supercapacitors. J Alloys Compd 702:178–185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (52173183, 61974045), the Natural Science Foundation of Hubei Province (2021CFB598), the Natural Science Foundation of Guangdong Province (2019A1515012092), and the opening project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education (Jianghan University) (JDGD-202207).

Author information

Authors and Affiliations

Authors

Contributions

XQ and JW: investigation, data analysis and draft writing. QZ and YZ: investigation and data analysis. HY: reviewing and editing. SS: editing, conceptualization and supervision.

Corresponding authors

Correspondence to Huangzhong Yu or Shengwei Shi.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Wan, J., Zhang, Q. et al. Polyaniline-modified graphitic carbon nitride as electrode materials for high-performance supercapacitors. Carbon Lett. 33, 781–790 (2023). https://doi.org/10.1007/s42823-022-00459-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00459-y

Keywords

Navigation