Skip to main content
Log in

All-solid-state supercapacitor composed of reduced graphene oxide (rGO)/activated carbon (AC) composite and polymer electrolyte

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The reduced graphene oxide (rGO)/activated carbon (AC) composites are coated on the aluminum substrate using spray coating technique to fabricate nanocarbon-based supercapacitor. Polymer-based solid-state xanthan-gum/Na2SO4 electrolyte is also introduced to increase stability of the supercapacitor. The electrochemical properties of the supercapacitor are evaluated using cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge tests. The highest capacitance value of the rGO/AC composite-based supercapacitor is 120 F/g. The rGO/AC composite-based supercapacitor has also retained ~ 85% of its initial capacitance value after 3000 galvanostatic charge/discharge cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dirican M, Yan C, Zhu P, Zhang X (2019) Composite solid electrolytes for all-solid-state lithium batteries. Mater Sci Eng R Rep 136:27–46 (%@ 0927-0796X)

    Article  Google Scholar 

  2. Cao C, Li Y, Liu H, Bai G, Mayl J, Lin X, Sutherland K, Nabar N, Cai J (2014) The potential therapeutic effects of THC on Alzheimer’s disease. J Alzheimer’s Dis 3:973–984 (%@ 1387–2877)

    Article  Google Scholar 

  3. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J (2017) Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33:363–386 (%@ 2211-2855)

    Article  CAS  Google Scholar 

  4. Tseng L-H, Hsiao C-H, Nguyen DD, Hsieh P-Y, Lee C-Y, Tai N-H (2018) Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochimica Acta 266:284–292 (%@ 0013-4686)

    Article  CAS  Google Scholar 

  5. Dong Q, Wang G, Qian B, Hu C, Wang Y, Qiu J (2014) Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization. Electrochimica Acta 137:388–394 (%@ 0013-4686)

    Article  CAS  Google Scholar 

  6. Shaikh JS, Shaikh NS, Kharade R, Beknalkar SA, Patil JV, Suryawanshi MP, Kanjanaboos P, Hong CK, Kim JH, Patil PS (2018) Symmetric supercapacitor: sulphurized graphene and ionic liquid. J Colloid Interface Sci 527:40–48 (%@ 0021-9797)

    Article  CAS  Google Scholar 

  7. Geim AK, Novoselov KS (2010) The rise of graphene in, nanoscience and technology: a collection of reviews from nature journals. World Scientific, Singapore, pp 11–19

    Google Scholar 

  8. Soldano C, Mahmood A, Dujardin E (2010) Production, properties and potential of graphene. Carbon 48 8:2127–2150 (%@ 0008-6223)

    Article  Google Scholar 

  9. Hu Y, Cheng H, Zhao F, Chen N, Jiang L, Feng Z, Qu L (2014) All-in-one graphene fiber supercapacitor. Nanoscale 6(12):6448–6451

    Article  CAS  Google Scholar 

  10. Shaikh JS, Shaikh NS, Sheikh AD, Mali SS, Kale AJ, Kanjanaboos P, Hong CK, Kim JH, Patil PS (2017) Perovskite solar cells: in pursuit of efficiency and stability. Mater Des 136:54–80 (%@ 0264-1275)

    Article  CAS  Google Scholar 

  11. Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9 8:3012–3015 (%@ 1530-6984)

    Article  Google Scholar 

  12. Ci L, Xu Z, Wang L, Gao W, Ding F, Kelly KF, Yakobson BI, Ajayan PM (2008) Controlled nanocutting of graphene. Nano Res 1 2:116–122 (%@ 1998-0124)

    Article  Google Scholar 

  13. Yu W, Xie H, Wang X, Wang X (2011) Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A 375 10:1323–1328 (%@ 0375-9601)

    Article  Google Scholar 

  14. Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Müllen K (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24(37):5130–5135 (%@ 0935-9648)

    Article  CAS  Google Scholar 

  15. Cao J, Wang Y, Zhou Y, Ouyang J-H, Jia D, Guo L (2013) High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem 689:201–206 (%@ 1572-6657)

    Article  CAS  Google Scholar 

  16. Jeong HT, Kim YR, Kim BC (2017) Flexible polycaprolactone (PCL) supercapacitor based on reduced graphene oxide (rGO)/single-wall carbon nanotubes (SWNTs) composite electrodes. J Alloys Compd 727:721–727 (%@ 0925-8388)

    Article  CAS  Google Scholar 

  17. Manthiram A, Fu Y, Chung S-H, Zu C, Su Y-S (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114 23:11751–11787 (%@ 10009-12665)

    Article  Google Scholar 

  18. Chen Z, Liu K, Liu S, Xia L, Fu J, Zhang X, Zhang C, Gao B (2017) Porous active carbon layer modified graphene for high-performance supercapacitor. Electrochimica Acta 237:102–108 (%@ 0013-4686)

    Article  CAS  Google Scholar 

  19. Ma G, Wen Z, Jin J, Wu M, Wu X, Zhang J (2014) Enhanced cycle performance of Li–S battery with a polypyrrole functional interlayer. J Power Sour 267:542–546 (%@ 0378-7753)

    Article  CAS  Google Scholar 

  20. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4 4:1963–1970 (%@ 1936-0851)

    Article  CAS  Google Scholar 

  21. Zhang J, Zhang Z, Jiao Y, Yang H, Li Y, Zhang J, Gao P (2019) The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J Power Sour 419:99–105 (%@ 0378-7753)

    Article  CAS  Google Scholar 

  22. Guardia L, Suárez L, Querejeta N, Vretenár V, Kotrusz P, Skákalová V, Centeno TA (2019) Biomass waste-carbon/reduced graphene oxide composite electrodes for enhanced supercapacitors. Electrochimica Acta 298:910–917 (%@ 0013-4686)

    Article  CAS  Google Scholar 

  23. Kang HG, Jeong JM, Hong SB, Lee GY, Kim JW, Choi BG (2019) Scalable exfoliation and activation of graphite into porous graphene using microwaves for high–performance supercapacitors. J Alloys Compd, 770:458–465 (%@ 0925-8388)

    Article  CAS  Google Scholar 

  24. Zhang Z, Xiao F, Qian L, Xiao J, Wang S, Liu Y (2014) Facile synthesis of 3D MnO2–graphene and carbon nanotube–graphene composite networks for high-performance, flexible, all-solid-state asymmetric supercapacitors. Adv Energy Mater 4(10):1400064 (%@ 1401614–1406832)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Taek Jeong.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, H.Y., Kim, Y.R. & Jeong, H.T. All-solid-state supercapacitor composed of reduced graphene oxide (rGO)/activated carbon (AC) composite and polymer electrolyte. Carbon Lett. 30, 107–113 (2020). https://doi.org/10.1007/s42823-019-00077-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-019-00077-1

Keywords

Navigation