Skip to main content

Advertisement

Log in

Factors affecting the electrical conductivity of conducting polymers

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Metals had been significantly substituted by synthetic polymers in most of our daily requirements, thus relaxing our life. Out of many applied areas, synthetic polymers especially conducting polymers had shown their marked effect and potential. Batteries, pseudocapacitors, superconductors, etc. are the potential zones where conducting polymers are chiefly employed owing to their appreciable conductivity, cost efficiency, and corrosion inhibition nature. Apart from energy storage devices, these conducting polymers find their potential application in biosensors, lasers, corrosion inhibitors, electrostatic materials, conducting adhesives, electromagnetic interference shielding, and others. These all applications including energy storage are due to astonishing properties like high conductivity, flexibility, tuneability, easy processibility, chemical, thermal and mechanical stability, easy and enhanced charge transportation, lightweight, etc. Conducting polymers are extensively studied for their application in energy storage batteries, for which the material under investigation needs to be electrically conductive. However, the conducting nature of these specific conducting polymers is dependent on numerous factors. This review discussed the effect of certain potential factors such as polymerization techniques temperature, doping, bandgap, extended conjugation, solvent, etc. on the electrical/electrochemical conductivity of these conducting polymers. These all factors with their specific variations are found to have a noticeable consequence on the electrical conductivity of the investigated conducting polymer and hence on the energy storage carried by them. This review could be proved beneficial to the readers, who can judiciously implement the conclusions to their research related to conducting polymers and their composites for generating highly efficient energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Shen Y, Xue H, Wang S, Wang Z, Zhang D, Yin D, Wang L, Cheng Y (2021) A highly promising high-nickel low-cobalt lithium layered oxide cathode material for high-performance lithium-ion batteries. J Colloid Interface Sci 597:334–344. https://doi.org/10.1016/j.jcis.2021.04.008

    Article  CAS  Google Scholar 

  2. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym Plast Technol Eng 51(14):1487–1500. https://doi.org/10.1080/03602559.2012.710697

    Article  CAS  Google Scholar 

  3. Kataria S, Mudila H, Kumar A, Prasher P (2022) Optical properties of novel materials for optoelectronic applications. Nanosci Nanotechnol-Asia. https://doi.org/10.2174/2210681213666221031103157

    Article  Google Scholar 

  4. Magu TO, Agobi AU, Hitler L, Dass PM (2019) A review on conducting polymers-based composites for energy storage application. J Chem Rev 1(1):19–34. https://doi.org/10.33945/SAMI/JCR.2019.1.1934

    Article  Google Scholar 

  5. Saal A, Hagemann T, Schubert US (2020) Polymers for battery applications—active materials, membranes, and binders. Adv Energy Mater 2001984:1–40. https://doi.org/10.1002/aenm.202001984

    Article  CAS  Google Scholar 

  6. Le TH, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers 9(12):150. https://doi.org/10.3390/polym9040150

    Article  CAS  Google Scholar 

  7. Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting polymer-based electrochemical supercapacitors—progress and prospects. Electrochim Acta 101:109–129. https://doi.org/10.1016/j.electacta.2012.09.116

    Article  CAS  Google Scholar 

  8. Mudila H, Joshi V, Rana S, Zaidi MGH, Sarfaraz A (2014) Enhanced electrocapacitive performance and high-power density of polypyrrole/graphene oxide nanocomposites prepared at reduced temperature. Carbon Lett 15(3):171–179. https://doi.org/10.5714/CL.2014.15.3.171

    Article  Google Scholar 

  9. Seo J, Lee SY, Bielawski CW (2019) Unveiling a masked polymer of dewar benzene reveals trans-poly(acetylene). Macromolecules 52(8):2923–2931. https://doi.org/10.1021/acs.macromol.8b02754

    Article  CAS  Google Scholar 

  10. Hong X, Liu Y, Li Y, Wang X, Fu J, Wang X (2020) Application progress of polyaniline, polypyrrole and polythiophene in lithium-sulfur batteries. Polymers 12(2):331. https://doi.org/10.3390/polym12020331

    Article  CAS  Google Scholar 

  11. Mudila H, Prasher P, Kumar M, Kumar A, Zaidi MGH, Kumar A (2019) Critical analysis of polyindole and its composites in supercapacitor application. Mater Renew Sustain Energy 8(9):2851. https://doi.org/10.1007/s40243-019-0149-9

    Article  Google Scholar 

  12. Shahabuddin S, Mazlan NA, Baharin SNA, Sambasevam KP (2021) Introduction to conducting polymers. In: Shahabuddin S, Pandey AK, Khalid M, Jagadish P (eds) Advances in hybrid conducting polymer technology. Engineering materials. Springer, Cham, pp 1–18

    Chapter  Google Scholar 

  13. Nellaiappan S, Shalini Devi KS, Selvaraj S, Krishnan UM, Yakhmi JV (2021) Chemical, gas and optical sensors based on conducting polymers. In: Shahabuddin S, Pandey AK, Khalid M, Jagadish P (eds) Advances in hybrid conducting polymer technology. Engineering materials. Springer, Cham, pp 159–200

    Chapter  Google Scholar 

  14. Martins VL, Obana TT, Torresi RM (2020) Electroactivity of 3D conducting polymers in water-in-salt electrolyte and their electrochemical capacitor performance. J Electroanal Chem 114822:1–28. https://doi.org/10.1016/j.jelechem.2020.114822

    Article  CAS  Google Scholar 

  15. Kumar A, Kumar A, Mudila H, Awasthi K, Kumar V (2020) Synthesis and thermal analysis of polyaniline (PANI). J Phys Conf Ser 1531:1–6. https://doi.org/10.1088/1742-6596/1531/1/012108

    Article  CAS  Google Scholar 

  16. Ramanavicius S, Ramanavicius A (2021) Conducting polymers in the design of biosensors and biofuel cells. Polymers 13(1):49. https://doi.org/10.3390/polym13010049

    Article  CAS  Google Scholar 

  17. Khokhar D, Jadoun S, Arif R, Jabin S (2020) Functionalization of conducting polymers and their applications in optoelectronics. Polym Plast Tech Mat 60(5):463–485. https://doi.org/10.1080/25740881.2020.1819312

    Article  CAS  Google Scholar 

  18. Adeosun WA, Katowah DF, Asiri AM, Hussein MA (2020) Conducting terpolymers and its hybrid nanocomposites variable trends. From synthesis to applications. A review. Polym Plast Tech Mat 60(3):271–285. https://doi.org/10.1080/25740881.2020.1811316

    Article  CAS  Google Scholar 

  19. Guo B, Glavas L, Albertsson AC (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 38(9):1263–1286. https://doi.org/10.1016/j.progpolymsci.2013.06.003

    Article  CAS  Google Scholar 

  20. Hoffman AS (2013) Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev 65(1):10–16. https://doi.org/10.1016/j.addr.2012.11.004

    Article  CAS  Google Scholar 

  21. Grivas C, Pollnau M (2012) Organic solid-state integrated amplifiers and lasers. Laser Photon Rev 6(4):419–462. https://doi.org/10.1002/lpor.201100034

    Article  Google Scholar 

  22. Vangari M, Pryor T, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139(2):72–79. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102

    Article  Google Scholar 

  23. Mudila H, Rana S, Zaidi MGH, Alam S (2014) Polyindole/graphene oxide nanocomposites: the novel material for electrochemical energy storage. Fuller, Nanotub Carbon Nanostruct 23(1):20–26. https://doi.org/10.1080/1536383x.2013.787604

    Article  Google Scholar 

  24. Knopfmacher O, Hammock ML, Appleton AL, Schwartz G, Mei J, Lei T, Pei J, Bao Z (2014) Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat Commun 5(1):1–9. https://doi.org/10.1038/ncomms3954

    Article  CAS  Google Scholar 

  25. Zhou H, Wang Z, Zhao W, Tong X, Jin X, Zhang X, Yu Y, Liu H, Ma Y, Li S, Chen W (2020) Robust and sensitive pressure/strain sensors from solution processable composite hydrogels enhanced by hollow-structured conducting polymers. Chem Eng J 403:1–9. https://doi.org/10.1016/j.cej.2020.126307

    Article  CAS  Google Scholar 

  26. Tajik S, Beitollahi H, Nejad FG, Shoaie IS, Khalilzadeh MA, Asl MS, Van Le Q, Zhang K, Jang HW, Shokouhimehr M (2020) Recent developments in conducting polymers: applications for electrochemistry. RSC Adv 10(62):37834–37856. https://doi.org/10.1039/D0RA06160C

    Article  CAS  Google Scholar 

  27. Srilalitha S, Jayaveera KN, Madhvendhra SS (2013) The effect of dopant, temperature, and bandgap on conductivity of conducting polymers. Int J Innov Res Sci Eng Technol 2(7):2694–2696

    Google Scholar 

  28. Namsheer K, Rout CS (2021) Conducting polymers: a comprehensive review on recent advances in synthesis, properties, and applications. RSC Adv 11:5659–5697. https://doi.org/10.1039/D0RA07800J

    Article  Google Scholar 

  29. Abu-Thabit NY (2016) Chemical oxidative polymerization of polyaniline: a practical approach for preparation of smart conductive textiles. J Chem Educ 93(9):1606–1611. https://doi.org/10.1021/acs.jchemed.6b00060

    Article  CAS  Google Scholar 

  30. Sapurina IY, Shishov MA (2012) Oxidative polymerization of aniline: molecular synthesis of polyaniline and the formation of supramolecular structures. New Polym Spec Appl. https://doi.org/10.5772/48758

    Article  Google Scholar 

  31. Mart H (2006) Oxidative polycondensation reaction. Des Monomers Polym 9(6):551–588. https://doi.org/10.1163/156855506778944055

    Article  CAS  Google Scholar 

  32. Kang H, Geckeler K (2000) Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: effect of the preparation technique and polymer additive. Polymer 41(18):6931–6934. https://doi.org/10.1016/s0032-3861(00)00116-6

    Article  CAS  Google Scholar 

  33. Lee JY, Kim DY, Kim CY (1995) Synthesis of soluble polypyrrole of the doped state in organic solvents. Synth Met 74(2):103–106. https://doi.org/10.1016/0379-6779(95)03359-9

    Article  CAS  Google Scholar 

  34. Shen Y, Wan M (1998) In situ doping polymerization of pyrrole with sulfonic acid as a dopant. Synth Met 96(2):127–132. https://doi.org/10.1016/s0379-6779(98)00076-9

    Article  CAS  Google Scholar 

  35. Thanasamy D, Jesuraj D, Kannan SKK, Avadhanam V (2019) A novel route to synthesis of polythiophene with great yield and high electrical conductivity without post doping process. Polymer 175(26):32–40. https://doi.org/10.1016/j.polymer.2019.03.042

    Article  CAS  Google Scholar 

  36. Wadatkar NS, Waghuley SA (2016) Studies on properties of as-synthesized conducting polythiophene through aqueous chemical route. J Mat Sci Mater Electron 27(10):10573–10581. https://doi.org/10.1007/s10854-016-5152-7

    Article  CAS  Google Scholar 

  37. David T, Dominic J, Kumar KKS, Vanaja A (2019) A novel route to synthesis of polythiophene with great yield and high electrical conductivity without post doping process. Polymer 175:32–40. https://doi.org/10.1016/j.polymer.2019.03.042

    Article  CAS  Google Scholar 

  38. Radja I, Djelad H, Morallon E, Benyoucef A (2015) Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by the chemical oxidative method. Synth Met 202:25–32. https://doi.org/10.1016/j.synthmet.2015.01.028

    Article  CAS  Google Scholar 

  39. Anguera G, García DS (2014) Conjugated polymers: synthesis and applications in optoelectronics. Afinidad. J Chem Eng Theor Appl Chem 71(568):251–262

    CAS  Google Scholar 

  40. Lawal AT, Wallace GG (2014) Vapor phase polymerization of conducting and non-conducting polymers: a review. Talanta 119:133–143. https://doi.org/10.1016/j.talanta.2013.10.023

    Article  CAS  Google Scholar 

  41. Ren X, Shi C, Zhang P, Jiang Y, Liu J, Zhang Q (2012) An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol-gel. Mater Sci Eng: B 177(12):929–934. https://doi.org/10.1016/j.mseb.2012.04.013

    Article  CAS  Google Scholar 

  42. Li J, He Y, Sun Y, Zhang X, Shi W, Ge D (2020) Synthesis of polypyrrole/V2O5 composite film on the surface of magnesium using a mild vapor phase polymerization (vpp) method for corrosion resistance. Coat 10(4):402(1–11). https://doi.org/10.3390/coatings10040402

    Article  CAS  Google Scholar 

  43. Jun T-S, Kim C-K, Kim YS (2014) Vapor phase polymerization of polyaniline nanotubes using Mn3O4 nanofibers as an oxidant. Mater Lett 133:17–19. https://doi.org/10.1016/j.matlet.2014.06.154

    Article  CAS  Google Scholar 

  44. Yang Y, Zhang L, Li S, Wang Z, Xu J, Yang W, Jiang Y (2013) Vapor phase polymerization deposition conducting polymer nanocomposites on porous dielectric surface as high-performance electrode materials. Nano-Micro Lett 5(1):40–46. https://doi.org/10.1007/bf03353730

    Article  CAS  Google Scholar 

  45. So JH, Mayevsky D, Winther-Jensen O, Winther-Jensen B (2014) A novel route for polymerization of thiophene based conducting polymers using trace-free oxidants. Polym Chem 5(2):361–364. https://doi.org/10.1039/c3py01265d

    Article  CAS  Google Scholar 

  46. Asatekin A, Barr MC, Baxamusa SH, Lau KKS, Tenhaeff W, Xu J, Gleason KK (2010) Designing polymer surfaces via vapor deposition. Mater Today Commun 13(5):26–33. https://doi.org/10.1016/s1369-7021(10)70081-x

    Article  CAS  Google Scholar 

  47. Heydarnezhad HR, Pourabbas B, Sharif M (2013) Different methods for photochemical synthesis of conducting polymers and their applications. Iran J Chem Eng 12(69):36–59

    Google Scholar 

  48. Kumar R, Singh S, Yadav BC (2015) Conducting polymers: synthesis, properties, and applications. Int Adv Res J Sci Eng Technol 2(11):110–124. https://doi.org/10.17148/IARJSET.2015.21123110

    Article  Google Scholar 

  49. Heydarnezhad HR, Pourabbas B (2013) One-step synthesis of conductive ceria/polypyrrole nanocomposite particles via photo-induced polymerization method. J Mater Sci Mater Electron 24(11):4378–4385. https://doi.org/10.1007/s10854-013-1413-x

    Article  CAS  Google Scholar 

  50. Rather MS, Majid K, Wanchoo RK, Singla ML (2013) The nanocomposite of Polyaniline with the photoadduct of potassium hexacyanoferrate and pyridine ligand: structural, electrical, mechanical and thermal study. Synth Met 179:60–66. https://doi.org/10.1016/j.synthmet.2013.07.010

    Article  CAS  Google Scholar 

  51. Fomo G, Waryo T, Feleni U, Baker P, Iwuoha E (2019) Electrochemical polymerization. In: Jafar Mazumder M, Sheardown H, Al-Ahmed A (eds) Functional polymers polymers and polymeric composites: a reference series. Springer, Cham, pp 105–131

    Google Scholar 

  52. Coelho MKL, Giarola JDF, Da Silva ATM, Tarley CRT, Borges KB, Pereira AC (2016) Development and application of electrochemical sensor based on molecularly imprinted polymer and carbon nanotubes for the determination of carvedilol. Chemosensors 4(4):1–15. https://doi.org/10.3390/chemosensors4040022

    Article  CAS  Google Scholar 

  53. Bhadra S, Singha NK, Khastgir D (2007) Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline. J Appl Polym Sci 104(3):1900–1904. https://doi.org/10.1002/app.25867

    Article  CAS  Google Scholar 

  54. Nunoo OA, Awuah JA, Abavare EKK, Singh K (2019) Effect of primary dopants on the conductivity of polyaniline synthesized by electrochemical polymerization. Int J Adv Res Eng Technol 10(6):157–163. https://doi.org/10.34218/IJARET.10.6.2019.019

    Article  Google Scholar 

  55. Rahaman M, Aldalbahi A, Almoiqli M, Alzahly S (2018) Chemical and electrochemical synthesis of polypyrrole using carrageenan as a dopant: polypyrrole/multi-walled carbon nanotube nanocomposites. Polymers 10(6):632(1–20). https://doi.org/10.3390/polym10060632

    Article  CAS  Google Scholar 

  56. Jérôme C, Labaye D, Bodart I, Jérôme R (1999) Electrosynthesis of polyacrylic/polypyrrole composites: formation of polypyrrole wires. Synth Met 101:3–4. https://doi.org/10.1016/s0379-6779(98)00524-4

    Article  Google Scholar 

  57. Trivedi DC (1999) Influence of counter ion on polyaniline and polypyrrole. Indian Acad Sci 22(3):447–455

    CAS  Google Scholar 

  58. Turac E, Varol R, Ak M, Sahmetlioglu E, Toppare L (2008) Electrochemical synthesis of a water-soluble and self-doped polythiophene derivative. Des Monomers Polym 11(4):309–317. https://doi.org/10.1163/156855508x332469

    Article  CAS  Google Scholar 

  59. Campbell SA, Li Y, Breakspear S, Walsh FC, Smith JR (2007) Conducting polymer coatings in electrochemical technology part 1 – synthesis and fundamental aspects. Int J Surf Eng Coat 85(5):237–244. https://doi.org/10.1179/174591907x229671

    Article  CAS  Google Scholar 

  60. Kitto T, Bodart-Le Guen C, Rossetti N, Cicoira F (2019) Processing and patterning of conducting polymers for flexible, stretchable, and biomedical electronics. In: Ostroverkhova O (ed) Handbook of organic materials for electronic and photonic devices, 2nd edn. Woodhead Publishing, pp 817–842

    Chapter  Google Scholar 

  61. Chiang CK, Park YW, Heeger AJ, Shirakawa H, Louis EJ, MacDiarmid AG (1978) Conducting polymers: halogen doped polyacetylene. J Chem Phys 69(11):5098–5104. https://doi.org/10.1063/1.436503

    Article  CAS  Google Scholar 

  62. Roth RS, Carroll D (2004) One-dimensional metals: conjugated polymers, organic crystals, carbon nanotubes. Wiley-VCH, Weinheim, Germany, pp 200–300

    Book  Google Scholar 

  63. Ansari SP, Mohammad F (2015) Electrical conductivity studies of conducting polymer nanocomposites in ambient conditions. Polym Polym Compos 24(4):273–280. https://doi.org/10.1177/096739111602400406

    Article  Google Scholar 

  64. Rathod SG, Bhajantri RF, Ravindrachary V, Pujari PK, Nagaraja GK, Naik J, Hebbar V, Chandrappa H (2015) Temperature-dependent ionic conductivity and transport properties of LiClO4-doped PVA/modified cellulose composites. Bull Mater Sci 38(5):1213–1221. https://doi.org/10.1007/s12034-015-1002-0

    Article  CAS  Google Scholar 

  65. Bakhshi AK (1995) Electrically conducting polymers: from fundamental to applied research. Bull Mater Sci 18(5):469–495

    Article  Google Scholar 

  66. Yamada K, Shinozaki B, Narikiyo T, Takigawa Y, Kuroda N, Bando T, Nakamura H (2019) Temperature dependence of the mobility of conducting polymer polyaniline with a secondary dopant. Synth Met 247:124–130. https://doi.org/10.1016/j.synthmet.2018.11.019

    Article  CAS  Google Scholar 

  67. Amorim DRB, Guimarães IDS, Fugikawa-Santos L, Vega ML, da Cunha HN (2020) Effect of temperature on the electrical conductivity of polyaniline/cashew gum blends. Mater Chem Phys 253:123383. https://doi.org/10.1016/j.matchemphys.2020.123383

    Article  CAS  Google Scholar 

  68. Kassim A, Basar ZB, Mahmud HNME (2002) Effects of preparation temperature on the conductivity of polypyrrole conducting polymer. J Chem Sci 114(2):155–162. https://doi.org/10.1007/bf02704308

    Article  CAS  Google Scholar 

  69. Karbownik I, Rac-Rumijowska O, Rybicki T, Suchorska-Wozniak P, Teterycz H (2021) The effect of temperature on electric conductivity of polyacrylonitrile-polyaniline fibers. IEEE Access 9:74017–74027. https://doi.org/10.1109/ACCESS.2021.3078835

    Article  Google Scholar 

  70. Nogami Y, Kaneko H, Ito H, Ishiguro T, Sasaki T, Toyota NA, Takahashi A, Tsukamoto J (1991) Low-temperature electrical conductivity of highly conducting polyacetylene in a magnetic field. Phys Rev B 43(14):11829–11839. https://doi.org/10.1103/physrevb.43.11829

    Article  CAS  Google Scholar 

  71. Su N (2015) Improving electrical conductivity, thermal stability, and solubility of polyaniline-polypyrrole nanocomposite by doping with anionic spherical polyelectrolyte brushes. Nanoscale Res Lett 10(1):301–309. https://doi.org/10.1186/s11671-015-0997-x

    Article  CAS  Google Scholar 

  72. Susilawat S (2018) The effect of temperature on the conductivity of polymer films. JPPIPA 4(2):43–50. https://doi.org/10.29303/jppipa.v4i2.122

    Article  Google Scholar 

  73. Khokhar D, Jadoun S, Arif R, Jabin S (2021) Functionalization of conducting polymers and their applications in optoelectronics. Polym Plast Technol Mat 60(5):463–485. https://doi.org/10.1080/25740881.2020.1819312

    Article  CAS  Google Scholar 

  74. Bryan AM, Santino LM, Lu Y, Acharya S, D’Arcy JM (2016) Conducting polymers for pseudocapacitive energy storage. Chem Mater 28(17):5989–5998. https://doi.org/10.1021/acs.chemmater.6b01762

    Article  CAS  Google Scholar 

  75. Wang PC, Yu JY (2012) Dopant-dependent variation in the distribution of polarons and bipolarons as charge carriers in polypyrrole thin films synthesized by oxidative chemical polymerization. React Funct Polym 72(5):311–316. https://doi.org/10.1016/j.reactfunctpolym.2012.03.005

    Article  CAS  Google Scholar 

  76. Jabarullah NH, Verrelli E, Gee A, Mauldin C, Navarro LA, Golden JH, Kemp NT (2016) Large dopant dependence of the current limiting properties of intrinsic conducting polymer surge protection devices. RSC Adv 6(89):85710–85717. https://doi.org/10.1039/C6RA18549E

    Article  CAS  Google Scholar 

  77. Liang Z, Zhang Y, Souri M, Luo X, Boehm AM, Li R, Zhang Y, Wang T, Kim D-Y, Mei J, Marder SR, Graham KR (2018) Influence of dopant size and electron affinity on the electrical conductivity and thermoelectric properties of a series of conjugated polymers. J Mater Chem A 6(34):16495–16505. https://doi.org/10.1039/C8TA05922E

    Article  CAS  Google Scholar 

  78. Green RA, Lovell NH, Poole-Warren LA (2010) Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. Act Biomater 6(1):63–71. https://doi.org/10.1016/j.actbio.2009.06.030

    Article  CAS  Google Scholar 

  79. Koopmans M, Leiviskä MAT, Liu J, Dong J, Qiu L, Hummelen JC, Portale G, Heiber MC, Koster LJA (2020) Electrical conductivity of doped organic semiconductors limited by carrier-carrier interactions. ACS Appl Mater Interfaces 12(50):56222–56230. https://doi.org/10.1021/acsami.0c15490

    Article  CAS  Google Scholar 

  80. Khalid M, Honorato AMB, Varela H (2018) Polyaniline: synthesis methods, doping, and conduction mechanism. Intechopen. https://doi.org/10.5772/intechopen.79089

    Article  Google Scholar 

  81. Arkhipov VI, Emelianova EV, Heremans P, Bassler H (2005) Analytic model of carrier mobility in doped disordered organic semiconductors. Phys Rev B 72(23):1–5. https://doi.org/10.1103/physrevb.72.235202

    Article  Google Scholar 

  82. Liu F, van Eersel H, Xu B, Wilbers JGE, de Jong MP, van der Wiel WG, Bobbert PA, Coehoorn R (2017) Effect of Coulomb correlation on charge transport in disordered organic semiconductors. Phys Rev B 96(20):1–8. https://doi.org/10.1103/physrevb.96.205203

    Article  CAS  Google Scholar 

  83. Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S, Ramakrishna S (2010) Applications of conducting polymers and their issues in biomedical engineering. J R Soc Interface 7(5):559–579. https://doi.org/10.1098/rsif.2010.0120.focus

    Article  CAS  Google Scholar 

  84. Li H, DeCoster ME, Ming C, Wang M, Chen Y, Hopkins PE, Chen L, Katz HE (2019) Enhanced molecular doping for high conductivity in polymers with volume freed for dopants. Macromolecules 52(24):9804–9812. https://doi.org/10.1021/acs.macromol.9b02048

    Article  CAS  Google Scholar 

  85. Nagarkar SS, Horike S, Itakura T, Le Ouay B, Demessence A, Tsujimoto M, Kitagawa S (2017) Enhanced and optically switchable proton conductivity in a melting coordination polymer crystal. Angew Chem 56(18):4976–4981. https://doi.org/10.1002/anie.201700962

    Article  CAS  Google Scholar 

  86. Navarchian AH, Hasanzadeh Z, Joulazadeh M (2013) Effect of polymerization conditions on reaction yield, conductivity, and ammonia sensing of polyaniline. Adv Polym Technol 32(3):1–10. https://doi.org/10.1002/adv.21356

    Article  CAS  Google Scholar 

  87. Wang J, Xu Y, Chen X, Du X, Li X (2007) Effect of doping ions on electrochemical capacitance properties of polypyrrole films. Acta Phys Chim Sin 23(3):299–304. https://doi.org/10.1016/s1872-1508(07)60023-0

    Article  CAS  Google Scholar 

  88. Sinha S, Bhadra S, Khastgir D (2009) Effect of dopant type on the properties of polyaniline. J Appl Polym Sci 112(5):3135–3140. https://doi.org/10.1002/app.29708

    Article  CAS  Google Scholar 

  89. Phasuksom K, Sirivat A (2016) Synthesis of nano-sized polyindole via emulsion polymerization and doping. Synth Met 219:142–153. https://doi.org/10.1016/j.synthmet.2016.05.033

    Article  CAS  Google Scholar 

  90. Phasuksom K, Prissanaroon-Ouajai W, Sirivat A (2018) Electrical conductivity response of methanol sensor based on conductive polyindole. Sens Actuators B: Chem 262:1013–1023. https://doi.org/10.1016/j.snb.2018.02.088

    Article  CAS  Google Scholar 

  91. Glaudell AM, Cochran JE, Patel SN, Chabinyc ML (2014) Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes. Adv Energy Mater 5(4):1401072(1–8). https://doi.org/10.1002/aenm.201401072

    Article  CAS  Google Scholar 

  92. Zhao D, Li L, Niu W, Chen S (2017) Highly conductive polythiophene films doped with chloroauric acid for dual-mode sensing of volatile organic amines and thiols. Sens Actuators B: Chem 243:380–387. https://doi.org/10.1016/j.snb.2016.12.018

    Article  CAS  Google Scholar 

  93. Sakunpongpitiporn P, Phasuksom K, Sirivat A (2021) Tuning of PEDOT : PSS synthesis via multiple doping for enhanced electrical conductivity. Polym Int 70(10):1534–1543. https://doi.org/10.1002/pi.6234

    Article  CAS  Google Scholar 

  94. Ismail AM, El-Newehy MH, El-Naggar ME, Meera Moydeen A, Menazea AA (2020) Enhancement of the electrical conductivity of the synthesized polyvinylidene fluoride/polyvinyl chloride composite doped with palladium nanoparticles via laser ablation. J Mater Res Technol 9(5):11178–11188. https://doi.org/10.1016/j.jmrt.2020.08.013

    Article  CAS  Google Scholar 

  95. An JY, Lee HS, Kim J, Ryu SW, Park BC, Kahng YH (2021) Doping of graphene with polyethylenimine and its effects on graphene-based supercapacitors. J Appl Phys 129(9):094904. https://doi.org/10.1063/5.0035891

    Article  CAS  Google Scholar 

  96. Scharber MC, Sariciftci NS (2021) Low bandgap conjugated semiconducting polymers. Adv Mater Technol 6(4):2000857. https://doi.org/10.1002/admt.202000857

    Article  CAS  Google Scholar 

  97. Shen Y, Yao X, Wang S, Zhang D, Yin D, Wang L, Cheng Y (2021) Gospel for improving the lithium storage performance of high-voltage high-nickel low-cobalt layered oxide cathode materials. ACS Appl Mater Interfaces 13(49):58871–58884. https://doi.org/10.1021/acsami.1c20568

    Article  CAS  Google Scholar 

  98. Cheng Y, Sun Y, Chu C, Chang L, Wang Z, Zhang D, Liu W, Zhuang Z, Wang L (2022) Stabilizing effects of atomic Ti doping on high-voltage high-nickel layered oxide cathode for lithium-ion rechargeable batteries. Nano Res 15:4091–4099

    Article  CAS  Google Scholar 

  99. Bouzzine SM, Salgado-Morán G, Hamidi M, Bouachrine M, Pacheco AG, Glossman-Mitnik D (2015) DFT study of polythiophene energy bandgap and substitution effects. J Chem 2015:1–12. https://doi.org/10.1155/2015/296386

    Article  CAS  Google Scholar 

  100. Roncali J (2007) Molecular engineering of the bandgap of π-conjugated systems: facing technological applications. Macromol Rapid Commun 28(17):1761–1775. https://doi.org/10.1002/marc.200700345

    Article  CAS  Google Scholar 

  101. Rasmussen SC (2018) Doped polyacetylene. Acetylene and its polymers. Mol Sci. https://doi.org/10.1007/978-3-319-95489-9_6

    Article  Google Scholar 

  102. Mudila H, Prasher P, Kumar A, Zaidi MGH, Verma A (2020) Effect of temperature on the polymerization and optical conductivity of thin flexible polypyrrole/starch composites. J Phys Conf Ser 1531:012105. https://doi.org/10.1088/1742-6596/1531/1/012105

    Article  CAS  Google Scholar 

  103. Choi J, Kang B, Kim HO, Suh JS, Haam S, Yang J (2019) Bandgap-controlled hollow polyaniline nanostructures by mn-mediated nano-confined polymerization. R Soc Chem. https://doi.org/10.1039/c8nr08420c

    Article  Google Scholar 

  104. Almasi MJ, Fanaei Sheikholeslami T, Naghdi MR (2016) Bandgap study of polyaniline and polyaniline/MWNT nanocomposites with in situ polymerization method. Compos B Eng 96:63–68. https://doi.org/10.1016/j.compositesb.2016.04.032

    Article  CAS  Google Scholar 

  105. Abdi MM, Ekramul Mahmud HNM, Abdullah LC, Kassim A, Ab Z, Rahman M, Chyi JLY (2011) Optical bandgap and conductivity measurements of polypyrrole-chitosan composite thin films. Chin J Polym Sci 30(1):93–100. https://doi.org/10.1007/s10118-012-1093-7

    Article  CAS  Google Scholar 

  106. Vivas-Reyes R, Mercado LD, Anaya-Gil J, Marrugo AG, Martinez E (2008) Theoretical study to evaluate polyfuran electrical conductivity and methylamine, methoxy substituent effects. J Mol Struct: THEOCHEM 861(1–3):137–141. https://doi.org/10.1016/j.theochem.2008.04.019

    Article  CAS  Google Scholar 

  107. Kaloni TP, Schreckenbach G, Freund MS (2016) Bandgap modulation in polythiophene and polypyrrole-based systems. Sci Rep. https://doi.org/10.1038/srep36554

    Article  Google Scholar 

  108. Kim S, Choi HC (2019) Light-promoted synthesis of the highly-conjugated crystalline covalent organic framework. Commun Chem 2(1):1–8. https://doi.org/10.1038/s42004-019-0162-z

    Article  Google Scholar 

  109. Yin N, Wang L, Lin Y, Yi J, Yan L, Dou J, Yang HB, Zhao X, Ma CQ (2016) Effect of the π-conjugation length on the properties and photovoltaic performance of A–π–D–π–A type oligothiophenes with a 4,8-bis(thienyl)benzo[1,2-b:4,5-b′]dithiophene core. Beilstein J Org Chem 12:1788–1797. https://doi.org/10.3762/bjoc.12.169

    Article  CAS  Google Scholar 

  110. Schopov I, Sinigerski V (1992) Doped non-conjugated polymers with enhanced electrical conductivity. Macromol Chem 193(8):1839–1846. https://doi.org/10.1002/macp.1992.021930805

    Article  CAS  Google Scholar 

  111. Swager TM (2017) 50th anniversary perspective: conducting/semiconducting conjugated polymers. a personal perspective on the past and the future. Macromolecules 50:4867–4886. https://doi.org/10.1021/acs.macromol.7b00582

    Article  CAS  Google Scholar 

  112. Pelzer KM, Cheng L, Curtiss LA (2016) Effects of functional groups in redox-active organic molecules: a high-throughput screening approach. J Phys Chem C 121(1):237–245. https://doi.org/10.1021/acs.jpcc.6b11473

    Article  CAS  Google Scholar 

  113. Park SJ, Son YR, Heo YJ (2018) Prospective synthesis approaches to emerging materials for supercapacitor. Emerging materials for energy conversion and storage. Elsevier, pp 185–208

    Chapter  Google Scholar 

  114. Chen X, Jiang J, Liang Q, Yang N, Ye HY, Cai M, Shen L, Yang DG, Ren TL (2015) First-principles study of the effect of functional groups on polyaniline backbone. Sci Rep 5(1):16907. https://doi.org/10.1038/srep16907

    Article  CAS  Google Scholar 

  115. Andriianova AN, Biglova YN, Mustafin AG (2020) Effect of structural factors on the physicochemical properties of functionalized polyanilines. RSC Adv 10(13):7468–7491. https://doi.org/10.1039/c9ra08644g

    Article  CAS  Google Scholar 

  116. Mamlouk M, Scott K (2012) Effect of anion functional groups on the conductivity and performance of anion exchange polymer membrane fuel cells. J Power Sources 211:140–146. https://doi.org/10.1016/j.jpowsour.2012.03.100

    Article  CAS  Google Scholar 

  117. Khattab AF, Saleh LA, Al-Eghedi SS (2007) Effect of polymeric chain flexibility on electrical conductivity of aromatic polyesters. Raf J Sci 18(1):20–27. https://doi.org/10.33899/rjs.2007.42638

    Article  Google Scholar 

  118. Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah IN, Chen Z, Chung WJ, Linder C, Toney MF, Murmann B, Bao Z (2017) A highly stretchable, transparent, and conductive polymer. Sci Adv 3(3):e1602076(1-10). https://doi.org/10.1126/sciadv.1602076

    Article  CAS  Google Scholar 

  119. Ouyang J (2021) Application of intrinsically conducting polymers in flexible electronics. Smart Mat. https://doi.org/10.1002/smm2.1059

    Article  Google Scholar 

  120. Zhou Y, Zhang F, Tvingstedt K, Barrau S, Li F, Tian W, Inganäs O (2008) Investigation on polymer anode design for flexible polymer solar cells. Appl Phys Lett 92(23):233308. https://doi.org/10.1063/1.2945796

    Article  CAS  Google Scholar 

  121. Du Y, Xu J, Paul B, Eklund P (2018) Flexible thermoelectric materials and devices. Appl Mater Today 12:366–388. https://doi.org/10.1016/j.apmt.2018.07.004

    Article  Google Scholar 

  122. Omastová M, Trchová M, Pionteck J, Prokeš J, Stejskal J (2004) Effect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis(2-Ethylhexyl) sulfosuccinate. Synth Met 143(2):153–161. https://doi.org/10.1016/j.synthmet.2003.11.005

    Article  CAS  Google Scholar 

  123. Calvo PA, Rodrguez J, Grande H, Mecerreyes D, Pomposo JA (2002) Chemical oxidative polymerization of pyrrole in the presence of m-hydroxybenzoic acid- and m-hydroxycinnamic acid-related compounds. Synth Met 126(1):111–116. https://doi.org/10.1016/s0379-6779(01)00560-4

    Article  CAS  Google Scholar 

  124. Rapi S, Bocchi V, Gardini GP (1988) Conducting polypyrrole by chemical synthesis in water. Synth Met 24(3):217–221. https://doi.org/10.1016/0379-6779(88)90259-7

    Article  CAS  Google Scholar 

  125. Zare NE, Lakouraj MM, Mohseni M (2014) Biodegradable polypyrrole/dextrin conductive nanocomposite: synthesis, characterization, antioxidant and antibacterial activity. Synth Met 187:9–16. https://doi.org/10.1016/j.synthmet.2013.09.045

    Article  CAS  Google Scholar 

  126. Subramanian P, Clark N, Winther-Jensen B, MacFarlane D, Spiccia L (2009) Vapor-phase polymerization of pyrrole and 3,4-ethylenedioxythiophene using iron(iii) 2,4,6-tri methyl benzenesulfonate. Aust J Chem 62(2):133–139. https://doi.org/10.1071/ch08347

    Article  CAS  Google Scholar 

  127. Khalid M, Tumelero MA, Brandt IS, Zoldan VC, Acuña JJS, Pasa AA (2013) Electrical conductivity studies of polyaniline nanotubes doped with different sulfonic acids. Indian J Mater Sci 2013:1–7. https://doi.org/10.1155/2013/718304

    Article  Google Scholar 

  128. Vivekanandan J, Ponnusamy V, Mahudeswaran A, Vijayanand PS (2011) Synthesis characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Arch Appl Sci Res 3(6):147–153

    CAS  Google Scholar 

  129. Çolak N, Sökmen B (2000) Doping of chemically synthesized polyaniline. Des Monomers Polym 3(2):181–189. https://doi.org/10.1163/156855500300142870

    Article  Google Scholar 

  130. Jiang C, Chen G, Wang X (2012) High-conversion synthesis of poly(3,4-ethylene dioxythiophene) by chemical oxidative polymerization. Synth Met 162(21–22):1968–1971. https://doi.org/10.1016/j.synthmet.2012.09.008

    Article  CAS  Google Scholar 

  131. Wadatkar NS, Waghuley SA (2018) A novel studies on electrical behaviour of chemically synthesized conducting polyindole. Indian J Phys 92:1551–1559. https://doi.org/10.1007/s12648-018-1257-6

    Article  CAS  Google Scholar 

  132. Taylan NB, Sari B, Unal HI (2010) Preparation of conducting poly(vinyl chloride)/polyindole composites and freestanding films via chemical polymerization. J Polym Sci Part B: Polym Phys 48(12):1290–1298. https://doi.org/10.1002/polb.22023

    Article  CAS  Google Scholar 

  133. Jeon SS, Yang SJ, Lee K-J, Im SS (2010) A facile and rapid synthesis of unsubstituted polythiophene with high electrical conductivity using binary organic solvents. Polymer 51(18):4069–4076. https://doi.org/10.1016/j.polymer.2010.07.013

    Article  CAS  Google Scholar 

  134. Li X, Li Y (2003) Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride-ethyl ether as the electrolyte. J Appl Polym Sci 90(4):940–946. https://doi.org/10.1002/app.12648

    Article  CAS  Google Scholar 

  135. Li X-G, Li J, Meng Q-K, Huang M-R (2009) Interfacial synthesis and widely controllable conductivity of polythiophene microparticles. J Phys Chem B 113(29):9718–9727. https://doi.org/10.1021/jp901395u

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Mudila.

Ethics declarations

Conflict of interest

The author declares no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pooja, Kumar, A., Prasher, P. et al. Factors affecting the electrical conductivity of conducting polymers. Carbon Lett. 33, 307–324 (2023). https://doi.org/10.1007/s42823-022-00443-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-022-00443-6

Keywords

Navigation