Skip to main content

Nanocomposite Polymer Electrolytes in Electrochemical Energy Storage Systems

  • Chapter
  • First Online:
Nanomaterials in Advanced Batteries and Supercapacitors

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2749 Accesses

Abstract

Polymer electrolytes, especially inorganic metal oxide nanoparticles incorporated solid polymer electrolytes, are an important breakthrough in modern energy storage technologies. In particular, they represent a significant step toward the development of high-energy density batteries and supercapacitors with an improved safety. The modern portable electronics markets not only seek high energy and power but also require miniaturization with desired shapes. Polymer electrolytes with adequate ion mobility and conductivity have attracted intensive research interests due to their versatility, reliability, safety, and easy handling over the conventional organic liquid electrolytes. This review addresses some of the key performance characteristics that could yield superior electrolytes for high-performance electrochemical energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wright PV (1975) Electrical conductivity in ionic complexes of poly (ethylene oxide). Br Polym J 7:319–327

    Article  Google Scholar 

  2. Armand MB, Chabagno JM, Duclot M (1978) In: Second international meeting on solid electrolytes. St. Andrews, Scotland

    Google Scholar 

  3. Bruce DW, O’Hare D, Walton RI (2011) Energy materials. John Wiley & Sons Ltd, Chichester, UK

    Book  Google Scholar 

  4. MacCallum JR, Vincent CA (1987) Polymer electrolytes reviews-I. Elsevier, London

    Google Scholar 

  5. Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH, New York

    Google Scholar 

  6. Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ion 11:91–95

    Article  Google Scholar 

  7. Shriver DF, Farrington GC (1985) Solid ionic conductors. Chem Eng News 63:42–44

    Article  Google Scholar 

  8. Frech R, Huang W (1994) Polymer conformation and ionic association in complexes of lithium, sodium and potassium triflate with poly (ethylene oxide) oligomer. Solid State Ion 72:103–108

    Article  Google Scholar 

  9. Abraham KM, Alamgir M (1990) Li + −conductive solid polymer electrolytes with liquid‐Like conductivity. J Eletrochem Soc 137:1657–1658

    Article  Google Scholar 

  10. Capuano F, Croce F, Scrosati B (1991) Composite polymer electrolytes. J Eletrochem Soc 138:1918–1922

    Article  Google Scholar 

  11. Quartarone E, Mustarelli P, Magistris A (1998) PEO-based composite polymer electrolytes. Solid State Ion 110:1–14

    Article  Google Scholar 

  12. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  Google Scholar 

  13. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394:456–458

    Article  Google Scholar 

  14. Best AS, Adebahr J, Jacobsson P, MacFarlane DR, Forsyth M (2001) Microscopic interactions in nanocomposite electrolytes. Macromolecules 34:4549–4555

    Article  Google Scholar 

  15. Castro WA, Zapata VH, Vargas RA, Mellander B-E (2007) Electrical conductivity relaxation in PVOH-LiClO4-Al2O3. Electrochim Acta 53:1422–1426

    Article  Google Scholar 

  16. Jayathilaka PARD, Dissanayake MAKL, Albinsson I, Mellander B-E (2002) Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9 LiTFSI polymer electrolyte system. Electrochim Acta 47:3257–3268

    Article  Google Scholar 

  17. Das SK, Bhattacharyya AJ (2009) Oxide particle surface chemistry and ion transport in Soggy sand electrolytes. J Phys Chem C 113:6699–7705

    Article  Google Scholar 

  18. Money BK, Hariharan K, Swenson J (2012) Glass transition and relaxation processes of nanocomposite polymer electrolytes. J Phys Chem B 116:7762–7770

    Article  Google Scholar 

  19. Do NST, Schaetzl DM, Dey B, Seabaugh AC, Fullerton-Shirey S (2012) Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: nanorods versus nanospheres. J Phys Chem C 116:21216–21223

    Article  Google Scholar 

  20. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim Acta 46:2457–2461

    Article  Google Scholar 

  21. Manuel Stephan A, Nahm KS (2006) Review on composite polymer electrolytes for lithium batteries. Polymer 47:5952–5964

    Article  Google Scholar 

  22. Kumar B, Scanlon LG (1994) Polymer-ceramic composite electrolytes. J Power Sources 52:261–268

    Article  Google Scholar 

  23. Wieczorek W, Florjanczyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40:2251–2258

    Article  Google Scholar 

  24. Grams 8 software (1994) Galactic Industries Crop

    Google Scholar 

  25. Bernson A, Lindgren J (1993) Free ions and ion pairing/clustering in the system LiCF3SO3 -PPOn. Solid State Ion 60:37–41

    Article  Google Scholar 

  26. Bernson A, Lindgren J (1993) Ion aggregation and morphology for poly (ethylene oxide)-based polymer electrolytes containing rare earth metal salts. Solid State Ion 60:31–36

    Article  Google Scholar 

  27. Suthanthiraraj SA, Kumar R, Paul BJ (2010) Vibrational spectroscopic and electrochemical characteristic of poly (propylene glycol)–silver triflate polymer electrolyte system. Ionics 16:145–151

    Article  Google Scholar 

  28. Kumar R, Suthanthiraraj SA (2014) Ion dynamics and segmental relaxation of CeO2 nanoparticles loaded soft-matter like gel polymer electrolyte. J Non-Cryst Solids 405:76–82

    Article  Google Scholar 

  29. Bruce PG, Hardgrave MT, Vincent CA (1992) The determination of transference numbers in solid polymer electrolytes using the Hittorf method. Solid State Ion 53-56:1087–1094

    Article  Google Scholar 

  30. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328

    Article  Google Scholar 

  31. Watanabe M, Nagano S, Sanui K, Ogata N (1988) Estimation of Li + transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ion 28–30:911–917

    Article  Google Scholar 

  32. Chung SH, Wang Y, Persi L (2001) Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J Power Sources 97–98:644–648

    Article  Google Scholar 

  33. Chen HW, Chang FC (2001) The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 42:9763–9769

    Article  Google Scholar 

  34. Wieczorek W, Raducha D, Zalewska A, Stevens JR (1998) Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes. J Phys Chem B 102:8725–8731

    Article  Google Scholar 

  35. Kumar R, Suthanthiraraj SA (2014) Segmental mobility and relaxation processes of Fe2O3 nanoparticle-loaded fast ionic transport nanocomposite gel polymer electrolyte. J Solid State Electrochem 18:1647–1656

    Article  Google Scholar 

  36. Mao G, Perea RF, Howells WS, Price DL, Saboungi ML (2000) Relaxation in polymer electrolytes on the nanosecond timescale. Nature 35:415–419

    Google Scholar 

  37. Shirey SKF, Maranas JK (2009) Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecules 42:2142–2156

    Article  Google Scholar 

  38. Gray FM (1997) Polymer electrolytes. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  39. Armand B, Chabagno JM, Duclot MJ (1979) Fast ion transport in solids. Elsevier, Amsterdam

    Google Scholar 

  40. Vogel H (1921) The law of the relation between the viscosity of liquids and the temperature. Phys Z 22:645–646

    Google Scholar 

  41. Tammann G, Hesse W (1926) Die abhängigkeit der viscosität von der temperatur bie unterkühlten flüssigkeiten. Z anorg allg Chem 156:245–257

    Article  Google Scholar 

  42. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355

    Article  Google Scholar 

  43. Olsen II, Koksbang R (1996) A temperature study of the ionic conductivity of a hybrid polymer electrolyte. J Electrochem Soc 143:570–574

    Article  Google Scholar 

  44. Shi J, Puhu C, Chen R, Ying SK (1990) Recent advances in fast Ion conducting materials and devices. World Scientific, Singapore, p 267

    Google Scholar 

  45. Zahurak S, Kaplan M, Rietman E, Murphy D, Cava R (1988) Phase relationships and conductivity of the polymer electrolytes poly (ethylene oxide)/lithium tetrafluoroborate and poly (ethylene oxide)/lithium trifluoromethanesulfonate. Macromolecules 21:654–660

    Article  Google Scholar 

  46. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31(5):1164–1169

    Article  Google Scholar 

  47. Watanabe M, Itoh MS, Sanui K, Ogata N (1987) Carrier transport and generation processes in polymer electrolytes based on poly(ethylene oxide) networks. Macromolecules 20:569–573

    Article  Google Scholar 

  48. Croce F, Curini R, Martinelli A (1999) Physical and chemical properties of nanocomposite polymer electrolytes. J Phys Chem B 103:10632–10638

    Article  Google Scholar 

  49. Sun H, Takeda Y, Imanishi N, Yamamoto O, Sohn H (2000) Ferroelectric materials as a ceramic filler in solid composite polyethylene Oxide‐Based electrolytes. J Electrochem Soc 147:2462–2467

    Article  Google Scholar 

  50. Tominaga Y, Asai S, Sumita M, Panero S, Scrosati B (2005) A novel composite polymer electrolyte: effect of mesoporous SiO2 on ionic conduction in poly (ethylene oxide)–LiCF3SO3 complex. J Power Sources 146:402–406

    Article  Google Scholar 

  51. Dissanayake M, Jayathilaka P, Bokalawala R, Albinsson I, Mellander B (2003) Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9 LiCF3SO3: Al2O3 composite polymer electrolyte. J Power Sources 119:409–414

    Article  Google Scholar 

  52. Xiong H, Zhao X, Chen J (2001) New polymer-inorganic nanocomposites: PEO-ZnO and PEO–ZnO–LiClO4 films. J Phys Chem B 105:10169–10174

    Article  Google Scholar 

  53. Sun H, Sohn H, Yamamoto O, Takeda Y, Imanishi N (1999) Enhanced lithium‐ion transport in PEO‐based composite polymer electrolytes with ferroelectric BaTiO3. J Electrochem Soc 146:1672–1676

    Article  Google Scholar 

  54. Appetecchi G, Scaccia S, Passerini S (2000) Investigation on the stability of the lithium‐polymer electrolyte interface. J Electrochem Soc 147:4448–4452

    Article  Google Scholar 

  55. Appetecchi GB, Croce F, Persi L, Ronci F, Scrosati B (2000) Transport and interfacial properties of composite polymer electrolytes. Electrochim Acta 45:1481–1490

    Article  Google Scholar 

  56. Fan J, Fedkiw PS (1997) Composite electrolytes prepared from fumed silica, polyethylene oxide oligomers, and lithium salts. J Electrochem Soc 144:399–408

    Article  Google Scholar 

  57. Scrosati B, Croce F, Persi L (2000) Impedance spectroscopy study of PEO‐based nanocomposite polymer electrolytes. J Electrochem Soc 147:1718–1721

    Article  Google Scholar 

  58. Kumar J, Rodrigues SJ, Kumar B (2010) Interface-mediated electrochemical effects in lithium/polymer-ceramic cells. J Power Sources 195:327–334

    Article  Google Scholar 

  59. Kumar B, Scanlon LG (1999) Polymer–ceramic composite electrolytes: conductivity and thermal history effects. Solid State Ion 124:239–254

    Article  Google Scholar 

  60. Kumar B, Scanlon LG, Spry RJ (2001) On the origin of conductivity enhancement in polymer-ceramic composite electrolytes. J Power Sources 96:337–342

    Article  Google Scholar 

  61. Krawiec W, Scanlon LG, Fellner JP, Vaia RA, Vasudevan S, Giannelis EP (1995) Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries. J Power Sources 54:310–315

    Article  Google Scholar 

  62. Choi B, Shin K (1996) Effects of SiC fillers on the electrical and mechanical properties of (PEO)16 LiClO4 electrolytes. Solid State Ion 86:303–306

    Article  Google Scholar 

  63. Nairn K, Forsyth M, Every H, Greville M, MacFarlane D (1996) Polymer-ceramic ion-conducting composites. Solid State Ion 86:589–593

    Article  Google Scholar 

  64. Wieczorek W, Stevens JR, Florjanczyk Z (1996) Composite polyether based solid electrolytes. The Lewis acid–base approach. Solid State Ion 85:67–72

    Article  Google Scholar 

  65. Golodnitsky D, Ardel G, Peled E (1996) Effect of plasticizers on the CPE conductivity and on the Li-CPE interface. Solid State Ion 85:231–238

    Article  Google Scholar 

  66. Peled E, Golodnitsky D, Ardel G, Eshkenazy V (1995) The sei model—application to lithium-polymer electrolyte batteries. Electrochim Acta 40:2197–2204

    Article  Google Scholar 

  67. Slane S, Salomon M (1995) Composite gel electrolyte for rechargeable lithium batteries. J Power Sources 55:7–10

    Article  Google Scholar 

  68. Hu XL, Hou GM, Zhang MQ, Rong MZ, Ruan WH, Giannelis EP (2012) A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica. J Mater Chem 22:18961–18967

    Article  Google Scholar 

  69. Kelley J, Simonsen J, Ding J (2013) Poly(vinylidene fluoride-co-hexafluoropropylene) nanocomposites incorporating cellulose nanocrystals with potential applications in lithium ion batteries. J Appl Polym Sci 127:487–493

    Article  Google Scholar 

  70. Patil SU, Yawale SS, Yawale SP (2014) Conductivity study of PEO–LiClO4 polymer electrolyte doped with ZnO nanocomposite ceramic filler. Bull Mater Sci 37:1403–1409

    Article  Google Scholar 

  71. Padmaraja O, Rao BN, Jena P, Venkateswarlu M, Satyanarayanaa N (2014) Electrochemical studies of electrospun organic/inorganic hybrid nanocomposite fibrous polymer electrolyte for lithium battery. Polymer 55:1136–1142

    Article  Google Scholar 

  72. Bertasia F, Negro E, Vezzùc K, Nawna G, Pagota G, Noto VD (2015) Single-ion-conducting nanocomposite polymer electrolytes for lithium batteries based on lithiated-fluorinated-iron oxide and poly(ethylene glycol) 400. Electrochim Acta 175:113–123. doi:10.1016/j.electacta.2015.03.149

    Article  Google Scholar 

  73. Liu W, Liu N, Sun J, Hsu PS, Li Y, Lee WH, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15:2740–2745

    Article  Google Scholar 

  74. Reale P, Panero S, Scrosati B (2005) Sustainable high-voltage lithium ion polymer batteries. J Electrochem Soc 152(10):A1949–A1954

    Article  Google Scholar 

  75. Qina B, Liua Z, Dinga G, Duana Y, Zhanga C, Cui Z (2014) A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures. Electrochim Acta 141:167–172

    Article  Google Scholar 

  76. Hassoun J, Panero S, Reale P, Scrosati B (2009) A new, safe, high-rate and high-energy polymer lithium –ion battery. Adv Mater 21:4807–4810

    Article  Google Scholar 

  77. Zhu Z, Hong M, Guo D, Shi J, Tao Z, Chen J (2014) All-solid-state lithium organic battery with composite polymer electrolyte and Pillar[5]quinone cathode. J Am Chem Soc 136:16461–16464

    Article  Google Scholar 

  78. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  Google Scholar 

  79. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763

    Article  Google Scholar 

  80. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  Google Scholar 

  81. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  82. Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  83. Panero S, Clemente A, Spila E (1996) Solid state supercapacitors using gel membranes as electrolytes. Solid State Ion 86:1285–1289

    Article  Google Scholar 

  84. Osaka T, Liu X, Nojima M, Momma T (1999) An electrochemical double layer capacitor using an activated carbon electrode with gel electrolyte binder. J Electrochem Soc 146:1724–1729

    Article  Google Scholar 

  85. Latham RJ, Rowlands SE, Schlindwein WS (2002) Supercapacitors using polymer electrolytes based on poly (urethane). Solid State Ion 147:243–248

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof KI Ozoemena (CSIR, South Africa) for the insightful comments and discussions on this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Raju .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Raju, K., Suthanthiraraj, S.A. (2016). Nanocomposite Polymer Electrolytes in Electrochemical Energy Storage Systems. In: Ozoemena, K., Chen, S. (eds) Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-26082-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26082-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26080-8

  • Online ISBN: 978-3-319-26082-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics