Skip to main content
Log in

Antioxidative MXene@GA-Decorated Textile Assisted by Metal Ion for Efficient Electromagnetic Interference Shielding, Dual-Driven Heating, and Infrared Thermal Camouflage

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Two-dimensional transition metal carbide/nitride (MXene)-based textiles have been developed in many fields; however, the high sensitivity to oxidation and weak interfacial bonding hinder their applications. Herein, we present a strategy for the preparation of a highly antioxidative MXene@gallic acid (MXene@GA, MG) hybrid dispersion, and further covalently grafted it onto carboxylated cotton fabric through interaction with metal ions (Fe3+) for fabricating wearable multifunctional textiles. Due to the cross-linking effect of Fe3+ and the remarkable antioxidant activity of natural polyphenol GA, the MG coatings firmly adhere to the textile surfaces and can withstand conventional washing, exhibiting favorable service stability and potential application prospects. Moreover, the obtained MG-decorated textile has the inherent characteristics of good breathability, moisture permeability, flexibility, and biocompatibility of the original fabric, which are conducive to the wearability of smart devices. Furthermore, by utilizing the outstanding conductivity (~ 330 S/m) and photothermal convertibility of the MG coating, the functional textile achieves high electromagnetic interference (EMI) shielding efficiency (~ 35 dB), excellent dual-driven (Joule and solar) heating warmth retention, and infrared thermal camouflage. Due to the green and scalable preparation process, favorable durability, excellent comfort, and multifunctionality, the MG-decorated textiles are anticipated to be promising candidates for the next generation of smart wearable personal protective clothing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248.

    Article  CAS  Google Scholar 

  2. Ma J, Cui Z, Du Y, Zhang J, Sun C, Hou C, Zhu N. Wearable fiber-based supercapacitors enabled by additive-free aqueous MXene inks for self-powering healthcare sensors. Adv Fiber Mater. 2022;4:1.

    Article  Google Scholar 

  3. Shuck CE, Sarycheva A, Anayee M, Levitt A, Zhu Y, Uzun S, Balitskiy V, Zahorodna V, Gogotsi O, Gogotsi Y. Scalable synthesis of Ti3C2Tx MXene. Adv Energy Mater. 2020;22:1901241.

    CAS  Google Scholar 

  4. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017;29:7633.

    Article  CAS  Google Scholar 

  5. Sun W, Shah SA, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green MJ. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A. 2017;5:21663.

    Article  CAS  Google Scholar 

  6. Hong NVM, Huang H, Zhou K, Lee PS, Que W, Xu JZ, Kong LB. Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J Mater Chem A. 2017;5:3039.

    Article  Google Scholar 

  7. Kim J, Yoon Y, Kim SK, Park S, Song W, Myung S, Jung HK, Lee SS, Yoon DH, An KS. Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion medium. Adv Funct Mater. 2021;31:2008722.

    Article  CAS  Google Scholar 

  8. Seredych M, Shuck CE, Pinto D, Alhabeb M, Precetti E, Deysher G, Anasori B, Kurra N, Gogotsi Y. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem Mater. 2019;31:3324.

    Article  CAS  Google Scholar 

  9. Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater. 2016;2:1600255.

    Article  Google Scholar 

  10. Zhang CJ, Pinilla S, McEvoy N, Cullen CP, Anasori B, Long E, Park SH, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X, Duesberg GS, Gogotsi Y, Nicolosi V. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29:4848.

    Article  CAS  Google Scholar 

  11. Natu V, Hart JL, Sokol M, Chiang H, Taheri ML, Barsoum MW. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew Chem Int Edit. 2019;58:12655–60.

    Article  CAS  Google Scholar 

  12. Zhao X, Vashisth A, Prehn E, Sun W, Shah SA, Habib T, Chen Y, Tan Z, Lutkenhaus JL, Radovic M, Green MJ. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter. 2019;1:513.

    Article  Google Scholar 

  13. Wang D, Xin Y, Wang Y, Li X, Wu H, Zhang W, Yao D, Wang H, Zheng Y, He Z, Yang Z, Lei X. A general way to transform Ti3C2Tx MXene into solvent-free fluids for filler phase applications. Chem Eng J. 2021;409: 128082.

    Article  CAS  Google Scholar 

  14. Wu X, Wang Z, Yu M, Xiu L, Qiu J. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability. Adv Mater. 2017;29:1607017.

    Article  Google Scholar 

  15. Liang X, Zhu M, Li H, Dou J, Jian M, Xia K, Li S, Zhang Y. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv Funct Mater. 2022;32:2200162.

    Article  CAS  Google Scholar 

  16. Wang S, Xu Q, Sun H. Functionalization of fiber devices: materials, preparations and applications. Adv Fiber Mater. 2022;4:324–41.

    Article  CAS  Google Scholar 

  17. Liu R, Li J, Li M, Zhang Q, Shi G, Li Y, Hou C, Wang H. MXene-coated air-permeable pressure-sensing fabric for smart wear. ACS Appl Mater Interfaces. 2020;12:46446.

    Article  CAS  Google Scholar 

  18. Uzun S, Seyedin S, Stoltzfus AL, Levitt AS, Alhabeb M, Anayee M, Strobel CJ, Razal JM, Dion G, Gogotsi Y. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv Funct Mater. 2019;29:1905015.

    Article  CAS  Google Scholar 

  19. Dong J, Luo S, Ning S, Yang G, Pan D, Ji Y, Feng Y, Su F, Liu C. MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl Mater Interfaces. 2021;13:60478.

    Article  CAS  Google Scholar 

  20. Wang X, Lei Z, Ma X, He G, Xu T, Tan J, Wang L, Zhang X, Qu L, Zhang X. A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater. Chem Eng J. 2022;430: 132605.

    Article  CAS  Google Scholar 

  21. Deng Z, Li L, Tang P, Jiao C, Yu ZZ, Koo CM, Zhang HB. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano. 2022;16:16976.

    Article  CAS  Google Scholar 

  22. Sreenilayam SP, Ul Ahad I, Nicolosi V, Brabazon D. MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Mater Today. 2021;43:99.

    Article  CAS  Google Scholar 

  23. Ahmed A, Hossain MM, Adak B, Mukhopadhyay S. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications. Chem Mater. 2020;32:10296.

    Article  CAS  Google Scholar 

  24. Wang J, Shen M, Liu Z, Wang W. MXene materials for advanced thermal management and thermal energy utilization. Nano Energy. 2022;97: 107177.

    Article  CAS  Google Scholar 

  25. Liu T, Liu Z, Fang Z, Zhang J, Gong S, Li J. An ultrastrong, reversible thermochromic film based on TEMPO-oxidized nanofibrillated cellulose. Compos Part B-Eng. 2021;224: 109191.

    Article  CAS  Google Scholar 

  26. Yan B, Zhou M, Liao X, Wang P, Yu Y, Yuan J, Wang Q. Developing a multifunctional silk fabric with dual-driven heating and rapid photothermal antibacterial abilities using high-yield MXene dispersions. ACS Appl Mater Interfaces. 2021;13:43414.

    Article  CAS  Google Scholar 

  27. Yan B, Zhou Q, Zhu X, Guo J, Mia MS, Yan X, Chen G, Xing T. A superhydrophobic bionic coating on silk fabric with flame retardancy and UV shielding ability. Appl Surf Sci. 2019;483:929.

    Article  CAS  Google Scholar 

  28. Jose S, Prakash A, Laha S, Natarajan S, Reddy ML. Green colored nano-pigments derived from Y2BaCuO5: NIR reflective coatings. Dyes Pigments. 2014;107:118.

    Article  CAS  Google Scholar 

  29. Wu Y, Hu H, Yuan C, Song J, Wu M. Electrons/ions dual transport channels design: concurrently tuning interlayer conductivity and space within re-stacked few-layered MXenes film electrodes for high-areal-capacitance stretchable micro-supercapacitor-arrays. Nano Energy. 2020;74: 104812.

    Article  CAS  Google Scholar 

  30. Yan B, Zhou M, Yu Y, Xu B, Cui L, Wang Q, Wang P. Orderly self-stacking a high-stability coating of MXene@polydopamine hybrid onto textiles for multifunctional personal thermal management. Compos Part A-Appl S. 2022;160: 107038.

    Article  CAS  Google Scholar 

  31. Saiz-Poseu J, Mancebo-Aracil J, Nador F, Busque F, Ruiz-Molina D. The chemistry behind catechol-based adhesion. Angew Chem Int Edit. 2019;58:696.

    Article  CAS  Google Scholar 

  32. Wu H, Sun H, Hong W, Mao L, Liu Y. Improvement of polyamide thin film nanocomposite membrane assisted by tannic acid-Fe (III) functionalized multiwall carbon nanotubes. ACS Appl Mater Interfaces. 2017;9:32255.

    Article  CAS  Google Scholar 

  33. Cao F, Zhang Y, Wang H, Khan K, Tareen AK, Qian W, Zhang H, Agren H. Recent advances in oxidation stable chemistry of 2D MXenes. Adv Mater. 2022;34:2107554.

    Article  CAS  Google Scholar 

  34. Sarycheva A, Gogotsi Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem Mater. 2020;32:3480.

    Article  CAS  Google Scholar 

  35. Xu D, Liang H, Zhu X, Yang L, Luo X, Guo Y, Liu Y, Bai L, Li G, Tang X. Metal-polyphenol dual crosslinked graphene oxide membrane for desalination of textile wastewater. Desalination. 2020;487: 114503.

    Article  CAS  Google Scholar 

  36. Wang W, Sun J, Zhang Y, Zhang Y, Hong G, Moutloali RM, Mamba BB, Li F, Ma J, Shao L. Mussel-inspired tannic acid/polyethyleneimine assembling positively-charged membranes with excellent cation permselectivity. Sci Total Environ. 2022;817: 153051.

    Article  CAS  Google Scholar 

  37. Wan S, Li X, Chen Y, Liu N, Du Y, Dou S, Jiang L, Cheng Q. High-strength scalable MXene films through bridging-induced densification. Science. 2021;374:96.

    Article  CAS  Google Scholar 

  38. Rodenstein M, Zurcher S, Tosatti SG, Spencer ND. Fabricating chemical gradients on oxide surfaces by means of fluorinated, catechol-based, self-assembled monolayers. Langmuir. 2010;26:16211.

    Article  CAS  Google Scholar 

  39. Shu R, Zhang J, Guo C, Wu Y, Wan Z, Shi J, Liu Y, Zheng M. Facile synthesis of nitrogen-doped reduced graphene oxide/nickel-zinc ferrite composites as high-performance microwave absorbers in the X-band. Chem Eng J. 2020;384: 123266.

    Article  CAS  Google Scholar 

  40. Li W, Wang X, Wu Y, Chen M, Li Z. One-step spontaneous grafting via diazonium chemistry for the fabrication of robust bionic multifunctional superhydrophobic fabric. Surf Coat Tech. 2021;407: 126802.

    Article  CAS  Google Scholar 

  41. Rahim MA, Kempe K, Müllner M, Ejima H, Ju Y, Koeverden MP, Suma T, Braunger JA, Leeming MG, Abrahams BF, Caruso F. Surface-confined amorphous films from metal-coordinated simple phenolic ligands. Chem Mater. 2015;27:5825.

    Article  CAS  Google Scholar 

  42. Li B, Dong Y, Zo C, Xu Y. Iron (III)-alginate fiber complex as a highly effective and stable heterogeneous Fenton photocatalyst for mineralization of organic dye. Ind Eng Chem Res. 2014;53:4199.

    Article  CAS  Google Scholar 

  43. Badhani B, Sharma N, Kakkar R. Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015;5:27540.

    Article  CAS  Google Scholar 

  44. Liu M, Chen K, Shi Y, Wang H, Wu S, Huang R, Feng Y, Tang L, Liu X, Song P. High-performance flexible nanocomposites with superior fire safety and ultra-efficient electromagnetic interference shielding. J Mater Sci Technol. 2023;166:133.

    Article  Google Scholar 

  45. Tang T, Wang S, Jiang Y, Xu Z, Chen Y, Peng T, Khan F, Feng J, Song P, Zhao Y. Flexible and flame-retarding phosphorylated MXene/polypropylene composites for efficient electromagnetic interference shielding. J Mater Sci Technol. 2022;111:66.

    Article  CAS  Google Scholar 

  46. Shi Y, Yao A, Han J, Wang H, Feng Y, Fu L, Yang F, Song P. Architecting fire safe hierarchical polymer nanocomposite films with excellent electromagnetic interference shielding via interface engineering. J Colloid Interf Sci. 2023;640:179.

    Article  CAS  Google Scholar 

  47. Liu L, Ma Z, Zhu M, Liu L, Dai J, Shi Y, Gao J, Dinh T, Nguyen T, Tang L, Song P. Superhydrophobic self-extinguishing cotton fabrics for electromagnetic interference shielding and human motion detection. J Mater Sci Technol. 2023;132:59.

    Article  CAS  Google Scholar 

  48. Chen K, Feng Y, Shi Y, Wang H, Fu L, Liu M, Lv Y, Yang F, Yu B, Liu M, Song P. Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties. Compos Part A-Appl S. 2022;160: 107070.

    Article  CAS  Google Scholar 

  49. Che R, Peng M, Duan F, Chen Q, Liang X. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater. 2004;16:401.

    Article  CAS  Google Scholar 

  50. Sun H, Che R, You X, Jiang Y, Yang Z, Deng J, Deng J, Qiu L, Peng H. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater. 2014;26:8120.

    Article  CAS  Google Scholar 

  51. Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W, Yang Y, Che R. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater. 2016;28:486.

    Article  CAS  Google Scholar 

  52. Wu Z, Cheng W, Jin C, Yang B, Xu C, Pei K, Zhang H, Yang Z, Che R. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv Mater. 2022;34:2107538.

    Article  CAS  Google Scholar 

  53. Che R, Zhi Y, Liang Y, Zhou G. Fabrication and microwave absorption of carbon nanotubes/CoFe2O4 spinel nanocomposite. Appl Phys Lett. 2006;88: 033105.

    Article  Google Scholar 

  54. Wu Z, Pei K, Xing L, Yu X, You W, Che R. Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv Funct Mater. 2019;29:1901448.

    Article  Google Scholar 

  55. Yin G, Wang Y, Wang W, Yu D. Multilayer structured PANI/MXene/CF fabric for electromagnetic interference shielding constructed by layer-by-layer strategy. Colloid Surface A. 2020;601: 125047.

    Article  CAS  Google Scholar 

  56. Zheng X, Wang P, Zhang X, Hu Q, Wang Z, Nie W, Zou L, Li C, Han X. Breathable, durable and bark-shaped MXene/textiles for high-performance wearable pressure sensors, EMI shielding and heat physiotherapy. Compos Part A-Appl S. 2022;152: 106700.

    Article  CAS  Google Scholar 

  57. Wang QW, Zhang HB, Liu J, Zhao S, Xie X, Liu L, Yang R, Koratkar N, Yu ZZ. Multifunctional and water-resistant MXene-decorated polyester textiles with outstanding electromagnetic interference shielding and Joule heating performances. Adv Funct Mater. 2019;29:1806819.

    Article  Google Scholar 

  58. Jia X, Shen B, Zhang L, Zheng W. Waterproof MXene-decorated wood-pulp fabrics for high-efficiency electromagnetic interference shielding and Joule heating. Compos Part B-Eng. 2020;198: 108250.

    Article  CAS  Google Scholar 

  59. Liu X, Jin X, Li L, Wang J, Yang Y, Cao Y, Wang W. Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance. J Mater Chem A. 2020;8:12526.

    Article  CAS  Google Scholar 

  60. Zheng X, Shen J, Hu Q, Nie W, Wang Z, Zou L, Li C. Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics. Nanoscale. 1832;2021:13.

    Google Scholar 

  61. Zheng X, Nie W, Hu Q, Wang X, Wang Z, Zou L, Hong X, Yang H, Shen J, Li C. Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Mater Design. 2021;200: 109442.

    Article  CAS  Google Scholar 

  62. Zheng X, Hu Q, Wang Z, Nie W, Wang P, Li C. Roll-to-roll layer-by-layer assembly bark-shaped carbon nanotube/Ti3C2Tx MXene textiles for wearable electronics. J Colloid Interf Sci. 2021;602:680.

    Article  CAS  Google Scholar 

  63. Cao WT, Ma C, Mao DS, Zhang J, Ma MG, Chen F. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibers and textiles. Adv Funct Mater. 2019;29:1905898.

    Article  CAS  Google Scholar 

  64. Park TH, Yu S, Koo M, Kim H, Kim EH, Park JE, Ok B, Kim B, Noh SH, Park C, Kim E, Koo C, Park C. Shape-adaptable 2D titanium carbide (MXene) heater. ACS Nano. 2019;13:6835.

    Article  CAS  Google Scholar 

  65. Yan B, Huang S, Ren Y, Zhou M, Yu Y, Xu B, Cui L, Wang Q, Wang P. HRP-catalyzed grafting of MXene@PGA to silk fibers for visualization of dual-driven heating smart textile. Int J Biol Macromol. 2023;226:1141.

    Article  CAS  Google Scholar 

  66. Xu D, Li Z, Li L, Wang J. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Adv Funct Mater. 2020;30:2000712.

    Article  CAS  Google Scholar 

  67. Li L, Shi M, Liu X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ultrathin titanium carbide (MXene) films for high-temperature thermal camouflage. Adv Funct Mater. 2021;31:2101381.

    Article  CAS  Google Scholar 

  68. Shi M, Shen M, Guo X, Jin X, Cao Y, Yang Y, Wang W, Wang J. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano. 2021;15:11396.

    Article  CAS  Google Scholar 

  69. Salihoglu O, Uzlu HB, Yakar O, Aas S, Balci O, Kakenov N, Balci S, Olcum S, Suzer S, Kocabas C. Graphene-based adaptive thermal camouflage. Nano Lett. 2018;18:4541.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the Six Talent Peaks Projects in Jiangsu Province (XCL-133), the National Natural Science Foundation of China (22178145 and 22109054), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_2333) are gratefully acknowledged. The authors would like to thank Mengyan Chen from Shiyanjia Lab (www.shiyanjia.com) for tests of AFM and XPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2832 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, B., Bao, X., Gao, Y. et al. Antioxidative MXene@GA-Decorated Textile Assisted by Metal Ion for Efficient Electromagnetic Interference Shielding, Dual-Driven Heating, and Infrared Thermal Camouflage. Adv. Fiber Mater. 5, 2080–2098 (2023). https://doi.org/10.1007/s42765-023-00330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00330-3

Keywords

Navigation