Skip to main content
Log in

Stretchable Luminescent Perovskite-Polymer Hydrogels for Visual-Digital Wearable Strain Sensor Textiles

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The integration of a display function with wearable interactive sensors offers a promising way to synchronously detect physiological signals and visualize pressure/stimuli. However, combining these two functions in a strain sensor textile is a longstanding challenge due to the physical separation of sensors and display units. Here, a water-stable luminescent perovskite hydrogel (emission band approximately 25 nm) is constructed by blending as-prepared CsPbBr3@PbBr(OH) with stretchable polyacrylamide (PAM) hydrogels. The facile introduction of CsPbBr3@PbBr(OH) endows the hydrogels with excellent optical properties and a high mechanical strength of 51.3 kPa at a fracture strain of 740%. Interestingly, the resulting hydrogels retain bright green fluorescence under conditions including water, ultraviolet light, and extensive stretching (> 700%). As a proof-of-concept, a novel wearable stretchable strain sensor textile based on these hydrogels is developed, and it displays visual-digital synergetic strain detection ability. It can perceive various motions on the human body in real time with electronic output signals from changes in resistance and simultaneously readable optical output signals, whether on land or underwater. This work provides a meaningful guide to rationally design perovskite hydrogels and accelerates the development of wearable visual-digital strain sensor textiles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the fndings of this study are available from the corresponding authors upon request.

References

  1. Niu H, Li H, Gao S, Li Y, Wei X, Chen Y, Yue W, Zhou W, Shen G. Perception-to-cognition tactile sensing based on artificial-intelligence-motivated human full-skin bionic electronic skin. Adv Mater. 2022;34:2202622.

    Article  CAS  Google Scholar 

  2. Hu X, Xu Y, Wang J, Ma J, Wang L, Wang J. In situ fabrication of superfine perovskite composite nanofibers with ultrahigh stability by one-step electrospinning toward white light-emitting diode. Adv Fiber Mater. 2023;5:183.

    Article  CAS  Google Scholar 

  3. Zhou Z, Chen K, Li X, Zhang S, Wu Y, Zhou Y, Meng K, Sun C, He Q, Fan W. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron. 2020;3:571.

    Article  Google Scholar 

  4. Wen DL, Pang YX, Huang P, Wang YL, Zhang XR, Deng HT, Zhang XS. Silk fibroin-based wearable all-fiber multifunctional sensor for smart clothing. Adv Fiber Mater. 2022;4:873.

    Article  CAS  Google Scholar 

  5. Guo Y, Wei X, Gao S, Yue W, Li Y, Shen G. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv Funct Mater. 2021;31:2104288.

    Article  CAS  Google Scholar 

  6. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater. 2020;32:1902549.

    Article  CAS  Google Scholar 

  7. Guo Y, Li H, Li Y, Wei X, Gao S, Yue W, Zhang C, Yin F, Zhao S, Kim NY. Wearable hybrid device capable of interactive perception with pressure sensing and visualization. Adv Funct Mater. 2022;32:2203585.

    Article  CAS  Google Scholar 

  8. Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, Zhu S, Zhang X, Qu L. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Adv Fiber Mater. 2022;4:361.

    Article  CAS  Google Scholar 

  9. Meng K, Xiao X, Wei W, Chen G, Nashalian A, Shen S, Xiao X, Chen J. Wearable pressure sensors for pulse wave monitoring. Adv Mater. 2022;34:2109357.

    Article  CAS  Google Scholar 

  10. Wang Y, Yue Y, Cheng F, Cheng Y, Ge B, Liu N, Gao Y. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano. 2022;16:1734.

    Article  CAS  Google Scholar 

  11. Hou Y, Wang L, Sun R, Zhang Y, Gu M, Zhu Y, Tong Y, Liu X, Wang Z, Xia J. Crack-across-pore enabled high-performance flexible pressure sensors for deep neural network enhanced sensing and human action recognition. ACS Nano. 2022;16:8358.

    Article  CAS  Google Scholar 

  12. Huang T, Long Y, Dong Z, Hua Q, Niu J, Dai X, Wang J, Xiao J, Zhai J, Hu W. Ultralight, elastic, hybrid aerogel for flexible/wearable piezoresistive sensor and solid–solid/gas–solid coupled triboelectric nanogenerator. Adv Sci. 2022;9:2204519.

    Article  CAS  Google Scholar 

  13. Pan S, Liu Z, Wang M, Jiang Y, Luo Y, Wan C, Qi D, Wang C, Ge X, Chen X. Mechanocombinatorially screening sensitivity of stretchable strain sensors. Adv Mater. 2019;31:1903130.

    Article  Google Scholar 

  14. Lu D, Liao S, Chu Y, Cai Y, Wei Q, Chen K, Wang Q. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv Fiber Mater. 2023;5:223.

    Article  CAS  Google Scholar 

  15. Shi X, Fan X, Zhu Y, Liu Y, Wu P, Jiang R, Wu B, Wu HA, Zheng H, Wang J. Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat Commun. 2022;13:1119.

    Article  CAS  Google Scholar 

  16. Liu H, Chen X, Zheng Y, Zhang D, Zhao Y, Wang C, Pan C, Liu C, Shen C. Lightweight, superelastic, and hydrophobic polyimide nanofiber /MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv Funct Mater. 2021;31:2008006.

    Article  CAS  Google Scholar 

  17. Qaiser N, Al-Modaf F, Khan SM, Shaikh SF, El-Atab N, Hussain MM. A robust wearable point-of-care CNT-based strain sensor for wirelessly monitoring throat-related illnesses. Adv Funct Mater. 2021;31:2103375.

    Article  CAS  Google Scholar 

  18. Yu S, Park TH, Jiang W, Lee SW, Kim EH, Lee S, Park JE, Park C. Soft human–machine interface sensing displays: materials and devices. Adv Mater. 2022. https://doi.org/10.1002/adma.202204964.

    Article  Google Scholar 

  19. Gu L, Poddar S, Lin Y, Long Z, Zhang D, Zhang Q, Shu L, Qiu X, Kam M, Javey A. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature. 2020;581:278.

    Article  CAS  Google Scholar 

  20. Han F, Wang T, Liu G, Liu H, Xie X, Wei Z, Li J, Jiang C, He Y, Xu F. Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv Mater. 2022;34:2109055.

    Article  CAS  Google Scholar 

  21. Lee SW, Baek S, Park SW, Koo M, Kim EH, Lee S, Jin W, Kang H, Park C, Kim G. 3D motion tracking display enabled by magneto-interactive electroluminescence. Nat Commun. 2020;11:6072.

    Article  CAS  Google Scholar 

  22. Jiang Y, Cheng Y, Liu S, Zhang H, Zheng X, Chen M, Khorloo M, Xiang H, Tang BZ, Zhu M. Solid-state intramolecular motions in continuous fibers driven by ambient humidity for fluorescent sensors. Natl Sci Rev. 2021;8:135.

    Article  Google Scholar 

  23. Zhao Y, Gao W, Dai K, Wang S, Yuan Z, Li J, Zhai W, Zheng G, Pan C, Liu C. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing. Adv Mater. 2021;33:2102332.

    Article  CAS  Google Scholar 

  24. Jia C, Xia Y, Zhu Y, Wu M, Zhu S, Wang X. High-brightness, high-resolution, and flexible triboelectrification-induced electroluminescence skin for real-time imaging and human–machine information interaction. Adv Funct Mater. 2022;32:2201292.

    Article  CAS  Google Scholar 

  25. Lu D, Liu T, Meng X, Luo B, Yuan J, Liu Y, Zhang S, Cai C, Gao C, Wang J. Wearable triboelectric visual sensors for tactile perception. Adv Mater. 2022. https://doi.org/10.1002/adma.202209117.

    Article  Google Scholar 

  26. Wu XG, Ji H, Yan X, Zhong H. Industry outlook of perovskite quantum dots for display applications. Nat Nanotechnol. 2022;17:813.

    Article  CAS  Google Scholar 

  27. Lin J, Lu Y, Li X, Huang F, Yang C, Liu M, Jiang N, Chen D. Perovskite quantum dots glasses based backlit displays. ACS Energy Lett. 2021;6:519.

    Article  CAS  Google Scholar 

  28. Liu XK, Xu W, Bai S, Jin Y, Wang J, Friend RH, Gao F. Metal halide perovskites for light-emitting diodes. Nat Mater. 2021;20:10.

    Article  CAS  Google Scholar 

  29. Han TH, Jang KY, Dong Y, Friend RH, Sargent EH, Lee TW. A roadmap for the commercialization of perovskite light emitters. Nat Rev Mater. 2022;7:757.

    Article  Google Scholar 

  30. Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y. State of the art and prospects for halide perovskite nanocrystals. ACS Nano. 2021;15:10775.

    Article  CAS  Google Scholar 

  31. Zhang Z. Light-emitting materials for wearable electronics. Nat Rev Mater. 2022;7:839.

    Article  Google Scholar 

  32. Zhang Z, Wang W, Jiang Y, Wang YX, Wu Y, Lai JC, Niu S, Xu C, Shih CC, Wang C. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature. 2022;603:624.

    Article  CAS  Google Scholar 

  33. Guo R, Fang Y, Wang Z, Libanori A, Xiao X, Wan D, Cui X, Sang S, Zhang W, Zhang H. Deeplearning assisted body area triboelectric hydrogel sensor network for infant care. Adv Funct Mater. 2022;32:2204803.

    Article  CAS  Google Scholar 

  34. Wei S, Qiu H, Shi H, Lu W, Liu H, Yan H, Zhang D, Zhang J, Theato P, Wei Y. Promotion of color-changing luminescent hydrogels from thermo to electrical responsiveness toward biomimetic skin applications. ACS Nano. 2021;15:10415.

    Article  CAS  Google Scholar 

  35. Wang Q, Qi Z, Wang QM, Chen M, Lin B, Qu DH. A time-dependent fluorescenthydrogel for “Time-Lock” information encryption. Adv Funct Mater. 2022;32:2208865.

    Article  CAS  Google Scholar 

  36. Lu W, Si M, Le X, Chen T. Mimicking color-changing organisms to enable the multicolors and multifunctions of smart fluorescent polymeric hydrogels. Acc Chem Res. 2022;55:2291.

    Article  CAS  Google Scholar 

  37. Sun Y, Le X, Zhou S, Chen T. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting. Adv Mater. 2022;34:2201262.

    Article  CAS  Google Scholar 

  38. Liu KK, Liu Q, Yang DW, Liang YC, Sui LZ, Wei JY, Xue GW, Zhao WB, Wu XY, Dong L. Water-induced MAPbBr3@PbBr(OH) with enhanced luminescence and stability. Light Sci Appl. 2020;9:44.

    Article  CAS  Google Scholar 

  39. Dong H, Kareem S, Gong X, Ruan J, Gao P, Zhou X, Liu X, Zhao X, Xie Y. Water-triggered transformation of ligand-free lead halide perovskite nanocrystal-embedded Pb(OH)Br with ultrahigh stability. ACS Appl Mater Interfaces. 2021;13:23960.

    Article  CAS  Google Scholar 

  40. Niu B, Wu H, Yin J, Wang B, Wu G, Kong X, Yan B, Yao J, Li CZ, Chen H. Mitigating the lead leakage of high-performance perovskite solar cells via in situ polymerized networks. ACS Energy Lett. 2021;6:3443.

    Article  CAS  Google Scholar 

  41. Lin H, Zhang X, Cai L, Lao J, Qi R, Luo C, Chen S, Peng H, Huang R, Duan C. High-stability fluorescent perovskites embedded in PbBrOH triggered by imidazole derivatives in water. J Mater Chem C. 2020;8:5594.

    Article  CAS  Google Scholar 

  42. Luo H, Huang Y, Liu H, Zhang B, Song J. Ionic liquid assisted pure blue emission CsPbBr3 quantum dots with improved optical properties and alkyl chain regulated stability. Chem Eng J. 2022;430:132790.

    Article  CAS  Google Scholar 

  43. Xiao X, Wang M, Chen S, Zhang Y, Gu H, Deng Y, Yang G, Fei C, Chen B, Lin Y. Lead-adsorbing ionogel-based encapsulation for impact-resistant, stable, and lead-safe perovskite modules. Sci Adv. 2022;7:8249.

    Article  Google Scholar 

  44. Wang YQ, Xue YN, Li SR, Zhang XH, Fei HX, Wu XG, Sang SB, Li XN, Wei M, Chen WY. Nanocomposite carbon dots/PAM fluorescent hydrogels and their mechanical properties. J Polym Res. 2017;24:224.

    Article  Google Scholar 

  45. Hu M, Yang Y, Gu X, Hu Y, Du Z, Wang C. Novel nanocomposite hydrogels consisting of C-dots with excellent mechanical properties. Macromol Mater Eng. 2015;300:1043.

    Article  CAS  Google Scholar 

  46. Meng X, Qiao Y, Do C, Bras W, He C, Ke Y, Russell TP, Qiu D. Hysteresis-free nanoparticle-reinforced hydrogels. Adv Mater. 2022;34:2108243.

    Article  CAS  Google Scholar 

  47. Xiang C, Wang Z, Yang C, Yao X, Wang Y, Suo Z. Stretchable and fatigue-resistant materials. Mater Today. 2020;34:7.

    Article  CAS  Google Scholar 

  48. Mai CL, Zhou Q, Xiong Q, Chen CC, Xu J, Zhang Z, Lee HW, Yeh CY, Gao P. Donor–π–acceptor type porphyrin derivatives assisted defect Passivation for efficient hybrid perovskite solar cells. Adv Funct Mater. 2021;31:2007762.

    Article  CAS  Google Scholar 

  49. Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun. 2014;5:5784.

    Article  CAS  Google Scholar 

  50. Weber MD, Niklaus L, Proschel M, Coto PB, Sonnewald U, Costa RD. Bioinspired hybrid white light-emitting diodes. J Chin Chem Soc. 2015;27:5493.

    CAS  Google Scholar 

  51. Kong J, Zhang JX, Wang YF, Qi W, Rao HJ, Hu LP, Su RX, He ZM. Bioinspired pH-sensitive fluorescent peptidyl nanoparticles for cell imaging. ACS Appl Mater Interfaces. 2020;12:4212.

    Article  CAS  Google Scholar 

  52. Li Z, Liu PC, Ji XF, Gong JY, Hu YB, Wu WJ, Wang XN, Peng HQ, Kwok RTK, Lam JWY. Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens. Adv Mater. 2020;32:1906493.

    Article  CAS  Google Scholar 

  53. Kong J, Wang YF, Qi W, Huang MM, Su RX, He ZM. Green fluorescent protein inspired fluorophores. Adv Colloid Interface Sci. 2020;285: 102286.

    Article  CAS  Google Scholar 

  54. Su DL, Wang L, Li M, Mei SL, Wei X, Dai HQ, Hu Z, Xie FX, Guo RQ. Highly luminescent water-soluble AgInS2/ZnS quantum dots-hydrogel composites for warm white LEDs. J Alloys Compd. 2020;824:153896.

    Article  CAS  Google Scholar 

  55. Cheng YH, Wang JG, Qiu ZJ, Zheng XY, Leung NLC, Lam JWY, Tang BZ. Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv Mater. 2017;29:1703900.

    Article  Google Scholar 

  56. Guo X, Xu D, Yuan HM, Luo QY, Tang SY, Liu L, Wu YQ. A novel fluorescent nanocellulosic hydrogel based on carbon dots for efficient adsorption and sensitive sensing in heavy metals. J Mater Chem A. 2019;7:27081.

    Article  CAS  Google Scholar 

  57. Beija M, Afonso CAM, Martinho JMG. Synthesis and applications of rhodamine derivatives as fluorescent probes. Chem Soc Rev. 2009;38:2410.

    Article  CAS  Google Scholar 

  58. Liu H, Du C, Liao L, Zhang H, Zhou H, Zhou W, Ren T, Sun Z, Lu Y, Nie Z. Approaching intrinsic dynamics of MXenes hybrid hydrogel for 3D printed multimodal intelligent devices with ultrahigh superelasticity and temperature sensitivity. Nat Commun. 2022;13:3420.

    Article  CAS  Google Scholar 

  59. Yuk H, Wu J, Zhao X. Hydrogel interfaces for merging humans and machines. Nat Rev Mater. 2022;7:935.

    Article  CAS  Google Scholar 

  60. Hu L, Chee PL, Sugiarto S, Yu Y, Shi C, Yan R, Yao Z, Shi X, Zhi J, Kai D. Hydrogel-based flexible electronics. Adv Mater. 2022. https://doi.org/10.1002/adma.202205326.

    Article  Google Scholar 

  61. Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL. Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3D fabric structures. Adv Mater. 2022;34:2109355.

    Article  CAS  Google Scholar 

  62. Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater. 2022;7:887.

    Article  Google Scholar 

  63. Wu Z, Yang X, Wu J. Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl Mater Interfaces. 2021;13:2128.

    Article  CAS  Google Scholar 

  64. Han S, Liu C, Lin X, Zheng J, Wu J, Liu C. Dual conductive network hydrogel for a highly conductive, self-healing, anti-freezing, and non-drying strain sensor. ACS Appl Energy Mater. 2020;2:996.

    CAS  Google Scholar 

  65. Lin S, Zhao X, Jiang X, Wu A, Ding H, Zhong Y, Li J, Pan J, Liu B, Zhu H. Highly stretchable, adaptable, and durable strain sensing based on a bioinspired dynamically cross-linked graphene/polymer composite. Small. 2019;15:1900848.

    Article  Google Scholar 

  66. Ho MD, Liu Y, Dong D, Zhao Y, Chen W. Fractal gold nanoframework for highly stretchable transparent strain-insensitive conductors. Nano Lett. 2018;18:3593.

    Article  CAS  Google Scholar 

  67. Zhai H, Xu LL, Liu ZK, Jin L, Yi YPQ, Zhang JZ, Fan YY, Cheng D, Li JS, Liu XQ, Song QW, Yue PF, Li Y. Twisted graphene fibre based breathable, wettable and washable anti-jamming strain sensor for underwater motion sensing. Chem Eng J. 2022;439:135502.

    Article  CAS  Google Scholar 

  68. Gao JF, Li B, Huang XW, Wang L, Lin LW, Wang H, Xue HG. Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring. Chem Eng J. 2019;373:298.

    Article  CAS  Google Scholar 

  69. Li B, Luo JC, Huang XW, Lin LW, Wang L, Hu MJ, Tang LC, Xue HG, Gao JF, Mai YW. A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos Part B Eng. 2020;181: 107580.

    Article  CAS  Google Scholar 

  70. Li QS, Ding C, Yuan W, Xie RJ, Zhou XM, Zhao Y, Yu M, Yang ZJ, Tian Q, Han F, Li HF, Deng XP, Li GG, Liu ZY. Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv Fiber Mater. 2021;3:302.

    Article  CAS  Google Scholar 

  71. Yang WF, Gong W, Gu W, Liu ZX, Hou CY, Li YG, Zhang QH, Wang HZ. Self-powered interactive fiber electronics with visual–digital synergies. Adv Mater. 2021;33:302.

    Article  Google Scholar 

  72. Gao JF, Wang L, Guo Z, Li B, Wang H, Luo JC, Huang XW, Xue HG. Flexible, superhydrophobic, and electrically conductive polymer nanofiber composite for multifunctional sensing applications. Chem Eng J. 2020;381:122778.

    Article  Google Scholar 

  73. Zhang WT, Tian HM, Liu TC, Liu HR, Zhao FB, Li XM, Wang CH, Chen XL, Shao JY. Chameleon-inspired active tunable structural color based on smart skin with multi-functions of structural color, sensing and actuation. Mater Horiz. 2023. https://doi.org/10.1039/D3MH00070B.

    Article  Google Scholar 

  74. Sun YD, Wang YP, Liu Y, Wu SL, Zhang SF, Niu WB. Biomimetic chromotropic photonic-ionic skin with robust resilience, adhesion, and stability. Adv Funct Mater. 2022;32:2204467.

    Article  CAS  Google Scholar 

  75. Wei SX, Lu W, Le XX, Ma CX, Lin H, Wu BY, Zhang JW, Chen T. Bioinspired synergistic fluorescence-color-switchable polymeric hydrogel actuators. Angew Chem Int Ed. 2019;58:16243.

    Article  CAS  Google Scholar 

  76. Zhang H, Chen HM, Lee JH, et al. Mechanochromic optical/electrical skin for ultrasensitive dual-signal sensing. ACS Nano. 2023;17:5921.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20220288), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (Start-up grant E1552102). This work was supported by the Singapore Ministry of Education Academic Research Fund Tier 2 (MOE2019-T2-2-127 and MOE-T2EP50120-0002), and A*STAR under AME IRG (A2083c0062). This work was supported by A*STAR under its IAF-ICP Programme I2001E0067 and the Schaeffler Hub for Advanced Research at NTU. This work was also supported by NTU-PSL Joint Lab collaboration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuanglong Yuan or Qichong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8155 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, L., Yuan, S. et al. Stretchable Luminescent Perovskite-Polymer Hydrogels for Visual-Digital Wearable Strain Sensor Textiles. Adv. Fiber Mater. 5, 1671–1684 (2023). https://doi.org/10.1007/s42765-023-00302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00302-7

Keywords

Navigation