Skip to main content
Log in

In Situ Fabrication of Superfine Perovskite Composite Nanofibers with Ultrahigh Stability by One-Step Electrospinning Toward White Light-Emitting Diode

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

All-inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (NCs) are emerging as promising candidate materials for optoelectronic devices due to their splendid optical and electrical properties. However, the intrinsic instability greatly limits their practical application. Herein, a feasible strategy is proposed for fabricating highly stable and luminescent CsPbBr3@PVDF-HFP/PS nanofibers by combining one-step electrospinning method with 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PFDTMS)-assisted post-treatment. The bright-emitting CsPbBr3 NCs can be effectively encapsulated within polymer nanofibers, which exhibit ultrafine diameter of only 88.1 ± 2.8 nm and high photoluminescence quantum yield (PLQY) of 87.9% via rationally optimizing the electrospinning parameters, concentration of perovskite precursors and ligands. Most importantly, the superhydrophobic surface structures of nanofibers are formed by the hydrolysis and condensation of PFDTMS under moist environment. Benefiting from the double effective protection of polymer matrices and hydrophobic PFDTMS oligomers against moisture erosion, the CsPbBr3@PVDF-HFP/PS nanofibers present an obviously improved stability, which can retain 90% initial PL intensity after water immersion for 70 days. Furthermore, an efficient white light-emitting diode with wide color gamut covering 117% of National Television System Committee (NTSC) standard is successfully fabricated based on the composite nanofiber membranes, suggesting their promising prospect for solid-state lighting and display applications.

Graphical Abstract

Superfine perovskite nanofibers with efficient fluorescence and ultrahigh stability are fabricated by combining one-step electrospinning method with PFDTMS-assisted post-treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, Yang RX, Walsh A, Kovalenko MV. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 2015;15:3692.

    Article  CAS  Google Scholar 

  2. Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk MI, Grotevent MJ, Kovalenko MV. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, I). Nano Lett 2015;15:5635.

    Article  CAS  Google Scholar 

  3. Lin J, Lu Y, Li X, Huang F, Yang C, Liu M, Jiang N, Chen D. Perovskite quantum dots glasses based backlit displays. ACS Energy Lett 2021;6:519.

    Article  CAS  Google Scholar 

  4. Qian XY, Tang YY, Zhou W, Shen Y, Guo ML, Li YQ, Tang JX. Strategies to improve luminescence efficiency and stability of blue perovskite light-emitting devices. Small Sci 2021;1:2000048.

    Article  CAS  Google Scholar 

  5. Wu Y, Li X, Zeng H. Highly luminescent and stable halide perovskite nanocrystals. ACS Energy Lett 2019;4:673.

    Article  CAS  Google Scholar 

  6. Pan A, Wang J, Jurow MJ, Jia M, Liu Y, Wu Y, Zhang Y, He L, Liu Y. General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 peroskite nanocrystals. Chem Mater 2018;30:2771.

    Article  CAS  Google Scholar 

  7. Wei Y, Deng X, Xie Z, Cai X, Liang S, Ma P, Hou Z, Cheng Z, Lin J. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Adv Funct Mater 2017;27:1703535.

    Article  Google Scholar 

  8. Yu JC, Lee AY, Kim DB, Jung ED, Kim DW, Song MH. Enhancing the performance and stability of perovskite nanocrystal light-emitting diodes with a polymer matrix. Adv Mater Technol 2017;2:1700003.

    Article  Google Scholar 

  9. He J, He Z, Towers A, Zhan T, Chen H, Zhou L, Zhang C, Chen R, Sun T, Gesquiere AJ, Wu ST, Dong Y. Ligand assisted swelling-deswelling microencapsulation (LASDM) for stable, color tunable perovskite-polymer composites. Nanoscale Adv 2020;2:2034.

    Article  CAS  Google Scholar 

  10. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 2019;119:5298.

    Article  CAS  Google Scholar 

  11. Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang GL, Li C, Willis P. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 2003;15:11615.

    Article  Google Scholar 

  12. Tu Y, Zhou L, Jin YZ, Gao C, Ye ZZ, Yang YF, Wang QL. Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications. J Mater Chem 2010;20:1594.

    Article  CAS  Google Scholar 

  13. Kumar GG, Shin J, Nho YC, Hwang IS, Fei G, Kim AR, Nahm KS. Irradiated PVdF-HFP-tin oxide composite membranes for the applications of direct methanol fuel cells. J Membr Sci 2010;350:92.

    Article  Google Scholar 

  14. Shen Y, Yan C, Lin K, Zhao Y, Xu S, Zhou B, Wei Z, Yan K. Recent advances on cyan-emitting (480≤λ≤520 nm) metal halide perovskite materials. Small Sci 2021;1:2000077.

    Article  CAS  Google Scholar 

  15. Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S. Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 2007;14:563.

    Article  CAS  Google Scholar 

  16. Lin D, Pan W, Wu H. Morphological control of centimeter long aluminum-doped zinc oxide nanofibers prepared by electrospinning. J Am Ceram Soc 2007;90:71.

    Article  CAS  Google Scholar 

  17. Jiang M, Hu Z, Liu Z, Wu Z, Ono KL, Qi Y. Engineering green-to-blue emitting CsPbBr3 quantum-dot films with efficient ligand passivation. ACS Energy Lett 2019;4:2731.

    Article  CAS  Google Scholar 

  18. Chang S, Bai Z, Zhong H. In situ fabricated perovskite nanocrystals: a revolution in optical materials. Adv Opt Mater 2018;6:1800380.

    Article  Google Scholar 

  19. Ahmed GH, Yin J, Bakr OM, Mohammed OF. Successes and challenges of core/shell lead halide perovskite nanocrystals. ACS Energy Lett 2021;6:1340.

    Article  CAS  Google Scholar 

  20. Luo H, Yang Y, Wang Y, Hou J. A naked-eye-detection alcohol dipstick: electrospun hierarchical structured fluorine-rich nanofibrous membranes. Compos Commun 2021;27:100818.

    Article  Google Scholar 

  21. Bi C, Wang S, Wen W, Yuan J, Cao G, Tian J. Room-temperature construction of mixed-halide perovskite quantum dots with high photoluminescence quantum yield. J Phys Chem C 2018;122:5151.

    Article  CAS  Google Scholar 

  22. Tong J, Wu J, Shen W, Zhang Y, Liu Y, Zhang T, Nie S, Deng Z. Direct hot-injection synthesis of lead halide perovskite nanocubes in acrylic monomers for ultrastable and bright nanocrystal-polymer composite films. ACS Appl Mater Interfaces 2019;11:9317.

    Article  CAS  Google Scholar 

  23. Song L, Guo X, Hu Y, Lv Y, Lin J, Liu Z, Fan Y, Liu X. Efficient inorganic perovskite light-emitting diodes with polyethylene glycol passivated ultrathin CsPbBr3 films. J Phys Chem Lett 2017;8:4148.

    Article  CAS  Google Scholar 

  24. Xiao S, Shen M, Ma H, Guo R, Zhu M, Wang S, Shi X. Fabrication of water-stable electrospun polyacrylic acid-based nanofibrous mats for removal of copper (II) ions in aqueous solution. J Appl Polym Sci 2010;116:2409.

    CAS  Google Scholar 

  25. Yee WA, Nguyen AC, Lee PS, Kotaki M, Liu Y, Tan BT, Mhaisalkar S, Lu X. Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer 2008;49:4196.

    Article  CAS  Google Scholar 

  26. Zuo W, Zhu M, Yang W, Yu H, Chen Y, Zhang Y. Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym Eng Sci 2005;45:704.

    Article  CAS  Google Scholar 

  27. Agarwal S, Greiner A, Wendorff JH. Functional materials by electrospinning of polymers. Prog Polym Sci 2013;38:963.

    Article  CAS  Google Scholar 

  28. Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys 2004;205:2327.

    Article  CAS  Google Scholar 

  29. Ramos PG, Flores E, Sánchez LA, Candal RJ, Hojamberdiev M, Estrada W, Rodriguez J. Enhanced photoelectrochemical performance and photocatalytic activity of ZnO/TiO2 nanostructures fabricated by an electrostatically modified electrospinning. Appl Surf Sci 2017;426:844.

    Article  CAS  Google Scholar 

  30. Zhou Y, Chen J, Bakr OM, Sun HT. Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem Mater 2018;30:6589.

    Article  CAS  Google Scholar 

  31. Zhang W, Liu X, He B, Zhu J, Li X, Shen K, Chen H, Duan Y, Tang Q. Enhanced efficiency of air-stable CsPbBr3 perovskite solar cells by defect dual passivation and grain size enlargement with a multifunctional additive. ACS Appl Mater Interfaces 2020;12:36092.

    Article  CAS  Google Scholar 

  32. Jang GG, Jacobs CB, Gresback RG, Ivanov IN, Meyer HM, Kidder M, Joshi PC, Jellison GE, Phelps TJ, Grahama DE, Moon JW. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules. J Mater Chem C 2015;3:644.

    Article  CAS  Google Scholar 

  33. Supaphol P, Mit-Uppatham C, Nithitanakul M. Ultrafine electrospun polyamide-6 fibers: effect of emitting electrode polarity on morphology and average fiber diameter. J Polym Sci Part B 2005;43:3699.

    Article  CAS  Google Scholar 

  34. Yuan S, Wang ZK, Zhuo MP, Tian QS, Jin Y, Liao LS. Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes. ACS Nano 2018;12:9541.

    Article  CAS  Google Scholar 

  35. Yu K, Fan T, Lou S, Zhang D. Biomimetic optical materials: integration of nature’s design for manipulation of light. Prog Mater Sci 2013;58:825.

    Article  Google Scholar 

  36. Chen T, Xu Y, Jiang W, Xie Z, Wang L, Jiang W. Ionic liquid assisted microwave synthesis of Cu-In-Zn-S/ZnS quantum dots and their application in white LED. J Inorg Mater 2020;35:439.

    Google Scholar 

  37. Chen H, Chen J, Zhao L, Zhu T, Yang Z. Electrochemical synthesis of colloidal lead-and bismuth-based perovskite nanocrystals. Chem Commun 2021;57:11553.

    Article  CAS  Google Scholar 

  38. Pan J, Quan LN, Zhao Y, Peng W, Murali B, Sarmahet SP, Yuan M, Sinatra L, Alyami NM, Liu J, Yassitepe E, Yang Z, Voznyy O, Comin R, Hedhili MN, Mohammed OF, Lu ZH, Kim DH, Sargent EH, Bakr OM. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater 2016;28:8718.

    Article  CAS  Google Scholar 

  39. Yuan D, Li Z, Thitsartarn W, Fan X, Sun J, Li H, He C. β phase PVDF-hfp induced by mesoporous SiO2 nanorods: synthesis and formation mechanism. J Mater Chem C 2015;3:3708.

    Article  CAS  Google Scholar 

  40. Chen Q, Lan X, Ma Y, Lu P, Yuan Z, Shi J. Boosting CsPbBr3-driven superior and long-term photocatalytic CO2 reduction under pure water medium: synergy effects of multifunctional melamine foam and graphitic carbon nitride (g-C3N4). Solar RRL 2021;5:2100186.

    Article  CAS  Google Scholar 

  41. Shi S, Wang Y, Zeng S, Cui Y, Xiao Y. Surface regulation of CsPbBr3 quantum dots for standard blue-emission with boosted PLQY. Adv Opt Mater 2020;8:2000167.

    Article  CAS  Google Scholar 

  42. Kim H, Bae SR, Lee TH, Lee H, Kang H, Park S, Jang HW, Kim SY. Enhanced optical properties and stability of CsPbBr3 nanocrystals through nickel doping. Adv Funct Mater 2021;31:2102770.

    Article  CAS  Google Scholar 

  43. Li Y, Li B, Zhao X, Tian N, Zhang J. Totally waterborne, nonfluorinated, mechanically robust, and self-healing superhydrophobic coatings for actual anti-icing. ACS Appl Mater Interfaces 2018;10:39391.

    Article  CAS  Google Scholar 

  44. Chen B, Ding Q, Ni D, Wang H, Ding Y, Zhang X, Dong S. Microstructure and mechanical properties of 3D Cf/SiBCN composites fabricated by polymer infiltration and pyrolysis. J Adv Ceram 2021;10:28.

    Article  CAS  Google Scholar 

  45. Endo A, Yamada M, Kataoka S, Sano T, Inagi Y, Miyaki A. Direct observation of surface structure of mesoporous silica with low acceleration voltage FE-SEM. Colloids Surf A 2010;357:11.

    Article  CAS  Google Scholar 

  46. Li L, Li B, Dong J, Zhang J. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials. J Mater Chem A 2016;4:13677.

    Article  CAS  Google Scholar 

  47. Guo P, Ye Q, Liu C, Cao F, Yang X, Ye L, Zhao W, Wang H, Li L, Wang H. Double barriers for moisture degradation: assembly of hydrolysable hydrophobic molecules for stable perovskite solar cells with high open-circuit voltage. Adv Funct Mater 2020;30:2002639.

    Article  CAS  Google Scholar 

  48. Li K, Wu P, Han Z. Preparation and surface properties of fluorine-containing diblock copolymers. Polymer 2002;43:4079.

    Article  CAS  Google Scholar 

  49. Yang W, Gao F, Qiu Y, Liu W, Xu H, Yang L, Liu Y. CsPbBr3-quantum-dots/polystyrene@silica hybrid microsphere structures with significantly improved stability for white LEDs. Adv Opt Mater 2019;7:1900546.

    Article  Google Scholar 

  50. Wang J, Zhang Y, Li G, Li G, Chen H, Li H, Liu Y, Chen S. Surface ligand engineering renders tube-like perovskite nanocrystal composites with outstanding polar organic solvent-tolerance and strong emission. Chem Eng J 2022;434:133866.

    Article  CAS  Google Scholar 

  51. Tsai PC, Chen JY, Ercan E, Chueh CC, Tung SH, Chen WC. Uniform luminous perovskite nanofibers with color-tunability and improved stability prepared by one-step core/shell electrospinning. Small 2018;14:1704379.

    Article  Google Scholar 

  52. Wang Y, Zhu Y, Huang J, Cai J, Zhu J, Yang X, Shen J, Li C. Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horiz 2017;2:225.

    Article  CAS  Google Scholar 

  53. Shi J, Ge W, Gao W, Xu M, Zhu J, Li Y. Enhanced thermal stability of halide perovskite CsPbX3 nanocrystals by a facile TPU encapsulation. Adv Opt Mater 2020;8:1901516.

    Article  CAS  Google Scholar 

  54. Lu X, Hu Y, Guo J, Wang CF, Chen S. Fiber-spinning-chemistry method toward in situ generation of highly stable halide perovskite nanocrystals. Adv Sci 2019;6:1901694.

    Article  CAS  Google Scholar 

  55. Ren F, Chen F, Mei E, Liang X, Qian PC, Xiang W. Mg2+-assisted passivation of surface defects of perovskite polymer composite films for white light-emitting diodes. ACS Photonics 2021;8:2130.

    Article  CAS  Google Scholar 

  56. Yang C, Niu W, Chen R, Pang T, Lin J, Zheng Y, Zhang R, Wang Z, Huang P, Huang F, Chen D. In situ growth of ultrapure green-emitting FAPbBr3-PVDF films via a synergetic dual-additive strategy for wide color gamut backlit display. Adv Mater Technol 2022;7:2200100.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported from the National Key Research and Development Program of China (Grant No. 2021YFB3500504), the Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-03-E00025), the National Natural Science Foundation of China (Nos. 52073058, 52103359), Shanghai Sailing Program (Nos. 20YF1400400, 21YF1400600), the Fundamental Research Funds for the Central Universities (2232020G-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lianjun Wang or Wan Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5941 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Xu, Y., Wang, J. et al. In Situ Fabrication of Superfine Perovskite Composite Nanofibers with Ultrahigh Stability by One-Step Electrospinning Toward White Light-Emitting Diode. Adv. Fiber Mater. 5, 183–197 (2023). https://doi.org/10.1007/s42765-022-00207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00207-x

Keywords

Navigation