Skip to main content

Advertisement

Log in

Electrospun Polyethylene Glycol/Polyvinyl Alcohol Composite Nanofibrous Membranes as Shape-Stabilized Solid–Solid Phase Change Materials

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

In this work, shape-stabilized solid-solid phase change materials (PCMs) were fabricated by simply electrospinning polyethylene glycol (PEG) and polyvinyl alcohol (PVA). Owing to the strong hydrogen bonds and entanglement between those molecular chains of PEG and PVA, PEG was packaged by PVA. The morphological structures, thermal stability and thermal energy storage properties of those fibers were investigated. SEM results showed that those electrospun PVA/PEG composite membranes hold a three-dimensional nonwoven web structure even the content of PEG as high as 70%. The thermal energy storage ability of those composite fibers increased with the increase of the content of PEG. The heat enthalpies of PEG/PVA = 7/3 were as high as 78.806 J/g. Moreover, those composite fibers had excellent thermal stability. After 100 heating and cooling cycles, there was almost no obvious change in the melting enthalpy and crystallization enthalpy. Those fibers still maintained good thermal regulation. The simple preparation process, low cost of raw materials and excellent stability endow the PCMs great utilization potentiality in smart textile and energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang D, Zhou J, Wu K, Li Z. Granular phase changing composites for thermal energy storage. Sol Energy. 2005;78:471–80. https://doi.org/10.1016/j.solener.2004.04.022.

    Article  CAS  Google Scholar 

  2. Karaipekli A, Sari A. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol Energy. 2009;83:323–32. https://doi.org/10.1016/j.solener.2008.08.012.

    Article  CAS  Google Scholar 

  3. Shao C, Kim HY, Gong J, Ding B, Lee DR, Park SJ. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater Lett. 2003;57:1579–84. https://doi.org/10.1016/S0167-577X(02)01036-4.

    Article  CAS  Google Scholar 

  4. Kou Y, Wang S, Luo J, Sun K, Zhang J, Tan Z, Shi Q. Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications. J Chem Thermodyn. 2019;128:259–74. https://doi.org/10.1016/j.jct.2018.08.031.

    Article  CAS  Google Scholar 

  5. Zhang Y, Wang J, Qiu J, Jin X, Umair MM, Lu R, Zhang S, Tang B. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity. Appl Energy.2019;237:83–90. https://doi.org/10.1016/j.apenergy.2018.12.075.

    Article  CAS  Google Scholar 

  6. Qiu J, Huo D, Xue J, Zhu G, Liu H, Xia Y. Encapsulation of a phase-change material in nanocapsules with a well-defined Hole in the wall for the controlled release of drugs, angew. Chemie Int Ed. 2019;58:10606–11. https://doi.org/10.1002/anie.201904549.

    Article  CAS  Google Scholar 

  7. Alva G, Lin Y, Fang G. An overview of thermal energy storage systems. Energy. 2018;144:341–78. https://doi.org/10.1016/j.energy.2017.12.037.

    Article  Google Scholar 

  8. Pielichowski K, Flejtuch K. Differential scanning calorimetric studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym Advan Technol. 2002;13:690–6. https://doi.org/10.1002/pat.276.

    Article  CAS  Google Scholar 

  9. Alkan C, Sarı A, Uzun O. Poly (ethylene glycol)/acrylic polymer blends for latent heat thermal energy storage. AIChE J. 2006;52:3310–4. https://doi.org/10.1002/aic.10928.

    Article  CAS  Google Scholar 

  10. Cao R, Li X, Chen S, Yuan H, Zhang X. Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites. Energy. 2017;138:157–66. https://doi.org/10.1016/j.energy.2017.07.049.

    Article  CAS  Google Scholar 

  11. Han N, Li Z, Zhang X, Yu W, Chen X, Wang D, Li J. Synthesis and characterization of cellulose-g-polyoxyethylene (2) hexadecyl ether solid–solid phase change materials. Cellulose. 2016;23:1663–74. https://doi.org/10.1007/s10570-016-0901-6.

    Article  CAS  Google Scholar 

  12. Hawlader MNA, Uddin MS, Mya M. Microencapsulated PCM thermal-energy storage system. Appl Energy. 2003;74:195–202. https://doi.org/10.1016/S0306-2619(02)00146-0.

    Article  CAS  Google Scholar 

  13. Barba A, Spiga M. Discharge mode for encapsulated PCMs in storage tanks. Sol Energy. 2003;74:141–8. https://doi.org/10.1016/S0038-092X(03)00117-8.

    Article  CAS  Google Scholar 

  14. Zhang HL, Baeyens J, Degrève J, Cáceres G, Segal R, Pitié F. Latent heat storage with tubular-encapsulated phase change materials (PCMs). Energy. 2014;76:66–72. https://doi.org/10.1016/j.energy.2014.03.067.

    Article  CAS  Google Scholar 

  15. Schossig P, Henning H, Gschwander S. Micro-encapsulated phase-change materials integrated into construction materials. Sol Energ Mat Sol C. 2005;89:297–306. https://doi.org/10.1016/j.solmat.2005.01.017.

    Article  CAS  Google Scholar 

  16. Fang G, Li H, Yang F, Liu X, Wu S. Preparation and characterization of nano-encapsulated n-tetradecane as phase change material for thermal energy storage. Chem Eng J. 2009;153:217–21. https://doi.org/10.1016/j.cej.2009.06.019.

    Article  CAS  Google Scholar 

  17. Onder E, Sarier N, Cimen E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim Acta. 2008;467:63–72. https://doi.org/10.1016/j.tca.2007.11.007.

    Article  CAS  Google Scholar 

  18. Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv Mater. 2019;32:1904911. https://doi.org/10.1002/adma.201904911.

    Article  CAS  Google Scholar 

  19. Weng W, Yang J, Zhang Y, Li Y, Yang S, Zhu L, Zhu M. A route toward smart system integration: from fiber design to device construction. Adv Mater. 2019;32:1902301. https://doi.org/10.1002/adma.201902301.

    Article  CAS  Google Scholar 

  20. Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X. Smart textile-integrated microelectronic systems for wearable applications. Adv Mater. 2019;32:1901958. https://doi.org/10.1002/adma.201901958.

    Article  CAS  Google Scholar 

  21. Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater. 2019;31:1–28. https://doi.org/10.1002/adma.201802348.

    Article  CAS  Google Scholar 

  22. Chen C, Wang L, Huang Y. Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite. Polymer. 2007;48:5202–7. https://doi.org/10.1016/j.polymer.2007.06.069.

    Article  CAS  Google Scholar 

  23. Venugopal J, Ma LL, Yong T, Ramakrishna S. In vitro study of smooth muscle cells on polycaprolactone and collagen nanofibrous matrices. Cell Biol Int. 2005;29:861–7. https://doi.org/10.1016/j.cellbi.2005.03.026.

    Article  CAS  Google Scholar 

  24. Cao Q, Liu P. Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage. Eur Polym J. 2006;42:2931–9. https://doi.org/10.1016/j.eurpolymj.2006.07.020.

    Article  CAS  Google Scholar 

  25. Karaman S, Karaipekli A, Sar A, Biçer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2011;95:1647–53. https://doi.org/10.1016/j.solmat.2011.01.022.

    Article  CAS  Google Scholar 

  26. El Halal SLM, Fonseca LM, do Evangelho JA, Bruni GP, dos Santos Hackbart HC, da Rosa Zavareze E, Dias ARG,. Electrospun ultrafine fibers from black bean protein concentrates and polyvinyl alcohol. Food Biophys. 2019; 14:446–455. https://doi.org/10.1007/s11483-019-09594-y.

    Article  Google Scholar 

  27. dos Santos JP, E da R Zavareze, Dias ARG, Vanier NL,. Immobilization of xylanase and xylanase–β-cyclodextrin complex in polyvinyl alcohol via electrospinning improves enzyme activity at a wide pH and temperature range. Int J Biol Macromol. 2018;118:1676–84. https://doi.org/10.1016/j.ijbiomac.2018.07.014.

    Article  CAS  Google Scholar 

  28. Porto MDA, dos Santos JP, Hackbart H, Bruni GP, Fonseca LM, da Rosa Zavareze E, Dias ARG. Immobilization of α-amylase in ultrafine polyvinyl alcohol (PVA) fibers via electrospinning and their stability on different substrates. Int J Biol Macromol. 2019;126:834–41. https://doi.org/10.1016/j.ijbiomac.2018.12.263.

    Article  CAS  Google Scholar 

  29. Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett. 2004;58:493–7. https://doi.org/10.1016/S0167-577X(03)00532-9.

    Article  CAS  Google Scholar 

  30. Awadhia A, Patel SK, Agrawal SL. Dielectric investigations in PVA based gel electrolytes. Prog Cryst Growth Charact Mater. 2006;52:61–8. https://doi.org/10.1016/j.pcrysgrow.2006.03.009.

    Article  CAS  Google Scholar 

  31. Wali A, Zhang Y, Sengupta P, Higaki Y, Takahara A, Badiger MV. Electrospinning of non-ionic cellulose ethers/polyvinyl alcohol nanofibers: characterization and applications. Carbohydr Polym. 2018;181:175–82. https://doi.org/10.1016/j.carbpol.2017.10.070.

    Article  CAS  Google Scholar 

  32. Fu X, Xiao Y, Hu K, Wang J, Lei J, Zhou C. Thermosetting solid–solid phase change materials composed of poly(ethylene glycol)-based two components: flexible application for thermal energy storage. Chem Eng J. 2016;291:138–48. https://doi.org/10.1016/j.cej.2016.01.096.

    Article  CAS  Google Scholar 

  33. Lin WJ, Flanagan DR, Linhardt RJ. A novel fabrication of poly(ε-caprolactone) microspheres from blends of poly(ε-caprolactone) and poly(ethylene glycol)s. Polymer. 1999;40:1731–5. https://doi.org/10.1016/S0032-3861(98)00378-4.

    Article  CAS  Google Scholar 

  34. Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly (D, L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res Part A. 2007;81:652–62. https://doi.org/10.1002/jbm.a.31019.

    Article  CAS  Google Scholar 

  35. Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer. 1999;40:4585–92. https://doi.org/10.1016/S0032-3861(99)00068-3.

    Article  CAS  Google Scholar 

  36. Ke G, Wang X, Pei J. Fabrication and properties of electrospun PAN/LA–SA/TiO2 composite phase change fiber, polym-plast. Technol Eng. 2018;57:958–64. https://doi.org/10.1080/03602559.2017.1370101.

    Article  CAS  Google Scholar 

  37. Ke H. Electrospun methyl stearate/PET form-stable phase change composite nanofibres for storage and retrieval of thermal energy. Mater Res Innov. 2018;22:150–8. https://doi.org/10.1080/14328917.2016.1266203.

    Article  CAS  Google Scholar 

  38. Wu Y, Chen C, Jia Y, Wu J, Huang Y, Wang L. Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage. Appl Energy. 2018;210:167–81. https://doi.org/10.1016/j.apenergy.2017.11.001.

    Article  CAS  Google Scholar 

  39. Rosu D, Tudorachi N, Rosu L. Investigations on the thermal stability of a MDI based polyurethane elastomer. J Anal Appl Pyrolysis. 2010;89:152–8. https://doi.org/10.1016/j.jaap.2010.07.004.

    Article  CAS  Google Scholar 

  40. Chen C, Liu W, Wang H, Peng K. Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energy. 2015;152:198–206. https://doi.org/10.1016/j.apenergy.2014.12.004.

    Article  CAS  Google Scholar 

  41. Fu X, Kong W, Zhang Y, Jiang L, Wang J, Lei J. Novel solid–solid phase change materials with biodegradable trihydroxy surfactants for thermal energy storage. RSC Adv. 2015;5:68881–9. https://doi.org/10.1039/c5ra11842e.

    Article  CAS  Google Scholar 

  42. Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;92:593–605. https://doi.org/10.1016/j.apenergy.2011.08.025.

    Article  CAS  Google Scholar 

  43. Radhakrishnan R, Gubbins KE. Free energy studies of freezing in slit pores: an order-parameter approach using Monte Carlo simulation. Mol Phys. 1999;96:1249–67. https://doi.org/10.1080/00268979909483070.

    Article  CAS  Google Scholar 

  44. Abdalkarim SYH, Yu HY, Song ML, Zhou Y, Yao J, Ni QQ. In vitro degradation and possible hydrolytic mechanism of PHBV nanocomposites by incorporating cellulose nanocrystal-ZnO nanohybrids. Carbohydr Polym. 2017;176:38–49. https://doi.org/10.1016/j.carbpol.2017.08.051.

    Article  CAS  Google Scholar 

  45. Abdalkarim SYH, Yu HY, Wang D, Yao J. Electrospun poly(3-hydroxybutyrate-co-3-hydroxy-valerate)/cellulose reinforced nanofibrous membranes with ZnO nanocrystals for antibacterial wound dressings. Cellulose. 2017;24:2925–38. https://doi.org/10.1007/s10570-017-1303-0.

    Article  CAS  Google Scholar 

  46. Abdalkarim SYH, Yu HY, Wang C, Yang L, Guan Y, Huang L, Yao J. Sheet-like cellulose nanocrystal-ZnO nanohybrids as multifunctional reinforcing agents in biopolyester composite nanofibers with ultrahigh UV-shielding and antibacterial performances. ACS Appl Bio Mater. 2018;1:714–27. https://doi.org/10.1021/acsabm.8b00188.

    Article  CAS  Google Scholar 

  47. Abdalkarim SYH, Yu H, Wang C, Chen Y, Zou Z, Han L, Yao J, Tam KC. Thermo and light-responsive phase change nanofibers with high energy storage efficiency for energy storage and thermally regulated on–off drug release devices. Chem Eng J. 2019;375:121979. https://doi.org/10.1016/j.cej.2019.121979.

    Article  CAS  Google Scholar 

  48. Petrović ZS, Zavargo Z, Flyn JH, Macknight WJ. Thermal degradation of segmented polyurethanes. J Appl Polym Sci. 1994;51:1087–95. https://doi.org/10.1002/app.1994.070510615.

    Article  Google Scholar 

  49. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8. https://doi.org/10.1021/bm015533u.

    Article  CAS  Google Scholar 

  50. Karaipekli A, Sari A. Capric acid and palmitic acid eutectic mixture applied in building wallboard for latent heat thermal energy storage. J Sci Ind Res (India). 2007;66:470–6.

    CAS  Google Scholar 

  51. Li H, Liu X, Fang G. Preparation and characteristics of n-nonadecane/cement composites as thermal energy storage materials in buildings. Energ Build. 2010;42:1661–5. https://doi.org/10.1016/j.enbuild.2010.04.009.

    Article  Google Scholar 

  52. Li C, Xie B, Chen J, He Z, Chen Z, Long Y. Emerging mineral-coupled composite phase change materials for thermal energy storage. Energ Convers Manage. 2019;183:633–44. https://doi.org/10.1016/j.enconman.2019.01.021.

    Article  CAS  Google Scholar 

  53. Lu Y, Xiao X, Fu J, Huan C, Qi S, Zhan Y, Zhu Y, Xu G. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning. Chem Eng J. 2019;355:532–9. https://doi.org/10.1016/j.cej.2018.08.189.

    Article  CAS  Google Scholar 

  54. Feng D, Feng Y, Li P, Zang Y, Wang C, Zhang X. Modified mesoporous silica filled with PEG as a shape-stabilized phase change materials for improved thermal energy storage performance. Micropor Mesopor Mat. 2020;292:109756. https://doi.org/10.1016/j.micromeso.2019.109756.

    Article  CAS  Google Scholar 

  55. Zhou S, Hu R, Luo X. Thermal illusion with twinborn-like heat signatures. Int J Heat Mass Trans. 2018;27:607–13. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.034.

    Article  Google Scholar 

  56. Cui Y, Gong H, Wang Y, Li D, Bai H. A thermally insulating textile inspired by polar bear hair. Adv Mater. 2018;30:1706807. https://doi.org/10.1002/adma.201706807.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The project was supported by international cooperation of Prof. Jaromir Marek and Key Program for International S &T Innovation Cooperation Projects of China [2016YFE0131400]. This project was supported by the Scientific Research Project of Department of Education of Zhejiang Province [19010035-F]. This work was supported by Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant No. 19012393-Y.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions from all the authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Yingzhan Li or Juming Yao.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yu, H., Abdalkarim, S.Y.H. et al. Electrospun Polyethylene Glycol/Polyvinyl Alcohol Composite Nanofibrous Membranes as Shape-Stabilized Solid–Solid Phase Change Materials. Adv. Fiber Mater. 2, 167–177 (2020). https://doi.org/10.1007/s42765-020-00038-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00038-8

Keywords

Navigation