Skip to main content
Log in

Optimization and Validation in Liquid Chromatography Using Design of Experiments

  • Review
  • Published:
Chemistry Africa Aims and scope Submit manuscript

Abstract

Faced to the large number of potential factors in liquid chromatography, the analyst is often led to determine through his experience the parameters to be studied. Experimental designs allow the screening of significant factors and the determination of best experimental conditions for analysis. This review mainly focused on the applications of experimental designs in liquid chromatography method development and validation over the last decades. Key advantages are related to the simultaneous control of a large number of variables to achieve desired separation. Several critical issues like multiple response optimization and modeling with least squares are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. M (1906) Adsorptionanalyse und chromatographische methode. Anwendung auf die chemie des Chlorophylls. Ber Dtsch Bot Ges 24: 384–393

  2. Vander Heyden Y, Nijhuis A, Smeyers-Verbeke J, Vandeginste BGM, Massart DL (2001) Guidance for robustness: ruggedness tests in method validation. J Pharm Biomed Anal 24:723–753

    Article  CAS  PubMed  Google Scholar 

  3. Otto M (2017) Chemometrics-statistic and computer application in analytical chemistry, 3rd edn. Wiley, Hoboken

    Google Scholar 

  4. Singh B, Kumar R, Ahuja N (2004) Optimizing drug delivery systems using systematic “design of experiments.” Part I: fundamental aspects. Crit Rev Ther Drug Carrier Syst 22:27–105

    Article  Google Scholar 

  5. Rozet E, Lebrun P, Hubert P (2013) Design spaces for analytical methods. TrAC Trends Anal Chem 42:157–167

    Article  CAS  Google Scholar 

  6. Callao MP (2014) Multivariate experimental design in environmental analysis TrAC. Trends Anal Chem 62:86–92

    Article  CAS  Google Scholar 

  7. Dejaegher B, Vander Heyden Y (2011) Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J Pharm Biomed Anal 56:141–158

    Article  CAS  PubMed  Google Scholar 

  8. Dejaegher B, Vander Heyden Y (2009) The use of experimental design in separation science. Acta Chromatogr 21:161–201

    Article  CAS  Google Scholar 

  9. Dejaegher B, Vander Heyden Y (2007) Ruggedness and robustness testing. J Chromatogr A 1158:138–157

    Article  CAS  PubMed  Google Scholar 

  10. Singh B, Beg S (2013) Quality by design in product development life cycle. Chron Pharmabiz 22:72–79

    Google Scholar 

  11. Siouffi AM, Phan-Tan-Luu R (2000) Optimization methods in chromatography and capillary electrophoresis. J Chromatogr A 892:75–106

    Article  CAS  PubMed  Google Scholar 

  12. Hibbert DB (2012) Experimental design in chromatography: a tutorial review. J Chromatogr B 910:2–13

    Article  CAS  Google Scholar 

  13. Sahu PK, Nageswara Rao R, Cecchi T, Swain S, Patro CS, Panda J (2018) An overview of experimental designs in HPLC method development and validation. J Pharm Biomed Anal 147:590–611. https://doi.org/10.1016/j.jpba.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  14. Bergqvist MHJ, Kaufmann P (1996) Analysis of cereal digalactosyldiacylglycerol molecular species by high-performance liquid chromatography. J Am Oil Chem Soc 73:211–217. https://doi.org/10.1007/BF02523897

    Article  CAS  Google Scholar 

  15. Waghulde M, Naik J (2018) Development and validation of analytical method for vildagliptin encapsulated poly-ε-caprolactone microparticles. Mater Today Proc 5:958–964

    Article  CAS  Google Scholar 

  16. dos Santos Moreira C, Rebello Lourenco F (2020) Development and optimization of a stability-indicating chromatographic method for verapamil hydrochloride and its impurities in tablets using an analytical quality by design (AQbD) approach. Microchem J 154:104610

    Article  Google Scholar 

  17. Van Dam D, Vermeiren Y, Aerts T, Paul De Deyn P (2014) Novel and sensitive reversed-phase high-pressure liquid chromatography method with electrochemical detection for the simultaneous and fast determination of eight biogenic amines and metabolites in human brain tissue. J Chromatogr A 1353:28–39

    Article  PubMed  Google Scholar 

  18. Singhsandhu P, Beg S, Katare OP, Singh B (2016) QbD-driven development and validation of a HPLC method for estimation of tamoxifen citrate with improved performance. J Chromatogr Sci 54:1373–1384

    Article  Google Scholar 

  19. Patel MN, Kothari CS (2016) Multivariate approaches for simultaneous determination of avanafil and dapoxetine by UV chemometrics and HPLC-QbD in binary mixtures and pharmaceutical product. J AOAC Int 99:649–663

    Article  CAS  Google Scholar 

  20. Mokhtar HI, Abdel-Salam RA, Hadad GM (2015) design space calculation by in silico robustness simulation with modeling error propagation in QbD framework of RP-HPLC method development. Chromatographia 78:457–466

    Article  CAS  Google Scholar 

  21. Snyder LR, Dolan JW (2013) Optimizing selectivity during reversed-phase high performance liquid chromatography method development: prioritizing experimental conditions. J Chromatogr A 1302:45–54

    Article  CAS  PubMed  Google Scholar 

  22. Latrous El Atrache L, Ben Sghaier R, Kefi BB, Haldys V, Dachraoui M, Tortajada J (2013) Factorial design optimization of experimental variables in preconcentration of carbamates pesticides in water samples using solid phase extraction and liquid chromatography-electrospray-mass spectrometry determination. Talanta 117:392–398

    Article  CAS  PubMed  Google Scholar 

  23. Ben Sghaier R, Tlili I, Latrous El Atrache L, Net S, Ghorbel-Abid I, Ouddane B, Benhassan-chehimi D, Trabelsi-Ayadi M (2017) A combination of factorial design, off-line SPE and GC–MS method for quantifying seven endocrine disrupting compounds in water. Int J Environ Res 11:1–12

    Article  Google Scholar 

  24. Ouertani R, Latrous El Atrache L, Ben Hamida N (2016) Chemometrically assisted optimization and validation of reversed phase liquid chromatography method for the analysis of carbamates pesticides. Chemometr Intell Lab Syst 154:38–44

    Article  CAS  Google Scholar 

  25. Jebali S, Belgacem C, Louhaichi MR, Bahri S, Latrous El Atarche L (2019) Application of factorial and Doehlert designs for the optimization of the simultaneous separation and determination of antimigraine drugs in pharmaceutical formulations by RP-HPLC-UV. Int J Anal Chem. https://doi.org/10.1155/2019/9685750

    Article  PubMed  PubMed Central  Google Scholar 

  26. Labidi A, Latrous El Atrache L (2020) Chemometrically assisted development of ultra-high-performance liquid chromatography method for the simultaneous quantification of sofosbuvir, daclatasvir and ledipasvir in pharmaceutical dosage forms. J Chromatogr Sci 57:910–919

    Article  PubMed  Google Scholar 

  27. Labidi A, Jebali S, Safta M, Latrous El Atrache L (2021) RP-HPLC stability indicating method development and validation for simultaneous determination of grazoprevir and elbasvir. Chem Afr. https://doi.org/10.1007/s42250-021-00253-9

    Article  Google Scholar 

  28. Sibinović P, Šmelcerović A, Palić R, Đorđević S, Marinković V (2005) Ruggedness testing of an HPLC method for the determination of ciprofloxacin. J Serb Chem Soc 70:979–986

    Article  Google Scholar 

  29. Attimarad M, Venugopala KN, Sree Harsha N, Aldhubiab BE, Nair AB (2020) Validation of rapid RP-HPLC method for concurrent quantification of amlodipine and celecoxib in pure and formulation using an experimental design. Michrochem J 152:104365

    Article  CAS  Google Scholar 

  30. Maljurić N, Otašević B, Golubović J, Krmar J, Zečević M, Protić A (2020) A new strategy for development of eco-friendly RP-HPLC method using corona charged aerosol detector and its application for simultaneous analysis of risperidone and its related impurities. Microchem J 153:104394

    Article  Google Scholar 

  31. Vucicevic K, Popovic G, Nikolic K, Vovk I, Agbaba D (2009) An experimental design approach to selecting the optimum HPLC conditions for the determination of 2 arylimidazoline derivatives. J Liq Chromatogr Relat Technol 32:656–667

    Article  CAS  Google Scholar 

  32. Mitrović M, Protić A, Malenović A, Otašević B, Zečević M (2020) analytical quality by design development of an ecologically acceptable enantioselective HPLC method for timolol maleate enantiomeric purity testing on ovomucoid chiral stationary phase. J Pharm Biomed Anal 180:113034

    Article  PubMed  Google Scholar 

  33. Zacharis CK, Vastardi E (2018) Application of analytical quality by design principles for the determination of alkyl p-toluenesulfonates impurities in Aprepitant by HPLC. Validation using total-error concept. J Pharm Biomed Anal 150:152–161

    Article  CAS  PubMed  Google Scholar 

  34. Kalariya PD, Namdev D, Srinivas R, Gananadhamu S (2017) Application of experimental design and response surface technique for selecting the optimum RP-HPLC conditions for the determination of moxifloxacin HCl and ketorolac tromethamine in eye drops. J Saudi Chem Soc 21:S373–S382. https://doi.org/10.1016/j.jscs.2014.04.004

    Article  CAS  Google Scholar 

  35. Wingert NR, Ellwanger JB, Bueno LM, Gobetti C, Garcia CV, Steppe M, Schapoval EES (2018) Application of quality by design to optimize a stability indicating LC method for the determination of ticagrelor and its impurities. Eur J Pharm Sci 118:208–215. https://doi.org/10.1016/j.ejps.2018.03.029

    Article  CAS  PubMed  Google Scholar 

  36. Gheshlaghi R, Scharer JM, Moo-Young M, Douglas PL (2008) Application of statistical design for the optimization of amino acid separation by reverse-phase HPLC. Anal Biochem 383:93–102

    Article  CAS  PubMed  Google Scholar 

  37. Abdelhameed EA, Abdelsalam RA, Hadad GM (2015) Chemometric-assisted spectrophotometric methods and high performance liquid chromatography for simultaneous determination of seven β-blockers in their pharmaceutical products: a comparative study. Spectrochim Acta A Mol Biomol Spectrosc. 141:278–286. https://doi.org/10.1016/j.saa.2015.01.035

    Article  CAS  Google Scholar 

  38. Funari CS, Cavalheiro AJ, Carneiro RL (2018) Coupled monolithic columns as an alternative for the use of viscous ethanol–water mobile phases on chromatographic fingerprinting complex samples. Rev Bras 28:261–266

    CAS  Google Scholar 

  39. Abdelgawad MA, Owis AI, Abdelwahab NS (2018) Design and optimization of a reversed-phase HPLC with diode array detection method for the determination of acemetacin and its toxic impurities using experimental design. Sep Sci plus 1:1–9. https://doi.org/10.1002/sscp.201700045

    Article  CAS  Google Scholar 

  40. Srinubabu G, Raju ChAI, Sarath N, Kiran Kumar P, Seshagiri Rao JVLN (2007) Development and validation of a HPLC method for the determination of voriconazole in pharmaceutical formulation using an experimental design. Talanta 71:1424–1429

    Article  CAS  PubMed  Google Scholar 

  41. Pham T-V, Mai X-L, Le T-A-T, Lee J-Y, Lee G, Kim D-J, Han S-B, Kim KH (2019) Development and validation of an HPLC method using a less hazardous mobile phase for the determination of some β-lactams. Bull Korean Chem Soc 40:863–871

    Article  CAS  Google Scholar 

  42. Ahmed S, Alqurshib A, Mohamed AMI (2018) Development of a chromatographic method with multi-criteria decision making design for simultaneous determination of nifedipine and atenolol in content uniformity testing. Talanta 184:296–306. https://doi.org/10.1016/j.talanta.2018.03.008

    Article  CAS  PubMed  Google Scholar 

  43. Dalvi AV, Uppuluri CT, Prasanthi BE, Ravi PR (2018) Design of experiments-based RP–HPLC bioanalytical method development for estimation of Rufinamide in rat plasma and brain and its application in pharmacokinetic study. J Chromatogr B 1102–1103:74–82. https://doi.org/10.1016/j.jchromb.2018.10.014

    Article  CAS  Google Scholar 

  44. Mokhtar HI, Abdel-Salam RA, Haddad GM (2015) Development of a fast high performance liquid chromatographic screening system for eight antidiabetic drugs by an improvedmethodology of in-silico robustness simulation. J Chromatogr A 1399:32–44. https://doi.org/10.1016/j.chroma.2015.04.038

    Article  CAS  PubMed  Google Scholar 

  45. Nikolic K, Filijovic ND, Maricic B (2013) Danica Agbaba, Development of a novel RP-HPLC method for the efficient separation of aripiprazole and its nine impurities. J Sep Sci 36:3165–3175

    Article  CAS  PubMed  Google Scholar 

  46. Vamsi Krishna M, Dash RN, Venugopal P, Jalachandra Reddy B, Sandeep P, Madhavi G (2017) Development of a RP-HPLC method for evaluation of in vitro permeability of voriconazole in the presence of enhancers through rat skin. J Saudi Chem Soc 21:1–10

    Article  CAS  Google Scholar 

  47. Tappin MRR, Nakamura MJ, Siani AC, Lucchetti L (2008) Development of an HPLC method for the determination of tetranortriterpenoids in Carapa guianensis seed oil by experimental design. J Pharm Biomed Anal 48:1090–1095

    Article  CAS  PubMed  Google Scholar 

  48. Carini JP, Kaiser S, Ortega GG, Bassani VL (2013) Development, optimisation and validation of a stability-indicating HPLC method of achyrobichalcone quantification using experimental designs. Phytochem Anal 24:193–200

    Article  CAS  PubMed  Google Scholar 

  49. Arce M, Sanllorente S, Ortiz MC, Sarabia LA (2018) Easy-to-use procedure to optimise a chromatographic method. Application in the determination of bisphenol-a and phenol in toys by means of liquid chromatography with fluorescence detection. J Chromatogr A 1534:93–100. https://doi.org/10.1016/j.chroma.2017.12.049

    Article  CAS  PubMed  Google Scholar 

  50. Dai S, Xu B, Zhang Y, Li J, Sun F, Shi X, Qiao Y (2016) Establishment and reliability evaluation of the design space for HPLC analysis of six alkaloids in Coptis chinensis (Huanglian) using Bayesian approach, Chinese. J Nat Med 14:0697–0708

    CAS  Google Scholar 

  51. Torrealday N, Gonzalez L, Alonso RM, Jimenez RM, OrtizLastra E (2003) Experimental design approach for the optimisation of a HPLC-fluorimetric method for the quantitation of the angiotensin II receptor antagonist telmisartan in urine. J Pharm Biomed Anal 32:847–857

    Article  CAS  PubMed  Google Scholar 

  52. Moussa BA, Hashem HMA, Mahrouse MA, Mahmoud ST (2018) Experimental design approach in HPLC method development: application for the simultaneous determination of sacubitril and valsartan in presence of their impurities and investigation of degradation kinetics. Chromatographia 81:139–156. https://doi.org/10.1007/s10337-017-3425-9

    Article  CAS  Google Scholar 

  53. Bertol G, Franco L, de Oliveira BH (2012) HPLC analysis of oxindole alkaloids in Uncaria tomentosa: sample preparation and analysis optimisation by factorial design. Phytochem Anal 23:143–151

    Article  CAS  PubMed  Google Scholar 

  54. Dawud ER, Shakya AK (2019) HPLC-PDA analysis of ACE-inhibitors, hydrochlorothiazide and indapamide utilizing design of experiments. Arab J Chem 12:718–728

    Article  CAS  Google Scholar 

  55. Iuliani P, Carlucci G, Marrone A (2010) Investigation of the HPLC response of NSAIDs by fractional experimental design and multivariate regression analysis. Response optimization and new retention parameters. J Pharm Biomed Anal 51:46–55

    Article  CAS  PubMed  Google Scholar 

  56. Sivakumar T, Manavalan R, Muralidharan C, Valliappan K (2007) Multi-criteria decision making approach and experimental design as chemometric tools to optimize HPLC separation of domperidone and pantoprazole. J Pharm Biomed Anal 43:1842–1848

    Article  CAS  PubMed  Google Scholar 

  57. Patel KG, Patel AT, Shah PA, Gandhi TR (2017) Multivariate optimization for simultaneous determination of aspirin and simvastatin by reverse phase liquid chromatographic method using AQbD approach. Bull Facul Pharm Cairo Univ 55:293–301

    Article  Google Scholar 

  58. Nascimento MM, Santos HM, Coutinho JP, Lobo IP, da Silva Junior ALS, Santos AG, de Jesus RM (2020) Optimization of chromatographic separation and classification of artisanal and fine chocolate based on its bioactive compound content through multivariate statistical techniques. Microchem J 152:104342

    Article  CAS  Google Scholar 

  59. Golabchifar A-A, Rouini M-R, Shafaghi B, Rezaee S, Foroumadi A, Khoshayand M-R (2011) Optimization of the simultaneous determination of imatinib and its major metabolite, CGP74588, in human plasma by a rapid HPLC method using D-optimal experimental design. Talanta 85:2320–2329

    Article  CAS  PubMed  Google Scholar 

  60. Zhang YJ, Gong WJ, Zhang JM, Zhang YP, Wang SM, Wang L, Xue HY (2008) Optimization strategies using response surface methodologies in high performance liquid chromatography. J Liq Chromatogr Relat Technol 31:2893–2916

    Article  CAS  Google Scholar 

  61. Montemurro M, De Zan MM, Robles JC (2016) optimized high performance liquid chromatography–ultraviolet detection method using core-shell particles for the therapeutic monitoring of methotrexate. J Pharm Anal 6:103–111

    Article  PubMed  Google Scholar 

  62. Song JZ, Qiao CF, Li SL, Han QB, Xu HX (2008) Purity determination of yunaconitine reference standard using HPLC with experimental design and response surface optimization. J Sep Sci 31:3809–3816

    Article  CAS  PubMed  Google Scholar 

  63. Li Y-G, Liu H, Vander Heyden Y, Chen M, Wang Z-T, Hu Z-B (2005) Robustness tests on the United States Pharmacopoeia XXVI HPLC assay for ginsenosides in Asian and American ginseng using an experimental design. Anal Chim Acta 536:29–38

    Article  CAS  Google Scholar 

  64. da Silva B, Valdomiro Gonzaga L, Fett R, Oliveira Costa AC (2019) Simplex-centroid design and Derringer’s desirability function approach for simultaneous separation of phenolic compounds from Mimosa scabrella Bentham honeydew honeys by HPLC/DAD. J Chromatogr A 1585:182–191. https://doi.org/10.1016/j.chroma.2018.11.072

    Article  CAS  PubMed  Google Scholar 

  65. Ferencz E, Kovács B, Boda F, Foroughbakhshfasaei MH, Kelemen ÉK, Tóth G, Szabó Z-I (2020) Simultaneous determination of chiral and achiral impurities of ivabradine on a cellulose tris(3-chloro-4-methylphenylcarbamate) chiral column using polar organic mode. J Pharm Biomed Anal 177:112851

    Article  CAS  PubMed  Google Scholar 

  66. Khamanga SM, Walker RB (2011) The use of experimental design in the development of an HPLC–ECD method for the analysis of captopril. Talanta 83:1037–1049

    Article  CAS  PubMed  Google Scholar 

  67. Cózar-Bernal MJ, Rabasco AM, González-Rodríguez ML (2013) Development and validation of a high performance chromatographic method for determining sumatriptan in niosomes. J Pharm Biomed Anal 72:251–260

    Article  PubMed  Google Scholar 

  68. de Almeida Borges VR, Ribeiro AF, de Souza Anselmo C, Cabral LM, de Sousa VP (2013) Development of a high performance liquid chromatography method for quantification of isomers β-caryophyllene and α-humulene in copaiba oleoresin using the Box-Behnken design. J Chromatogr B 940:35–41

    Article  Google Scholar 

  69. Beg S, Kohli K, Swain S, Hasnain MS (2012) Development and validation of RP-HPLC method for quantitation of amoxicillin trihydrate in bulk and pharmaceutical formulations using box-Behnken experimental design. J Liq Chromatogr Related Technol 35:393–406

    Article  CAS  Google Scholar 

  70. Sahu PK, Patro CS (2013) Application of chemometric response surface methodology in development and optimization of a RP-HPLC method for the separation of metaxalone and its base hydrolytic impurities. J Liq Chromatogr Relat Technol 37:2444–2464

    Article  Google Scholar 

  71. Dash RN, Habibuddin M, Humaira T, Patel AA (2015) Application of quality by design for the optimization of an HPLC method to determine ezetimibe in a supersaturable self nanoemulsifying formulation. J Liq Chromatogr Relat Technol 38:874–885

    Article  CAS  Google Scholar 

  72. Zhang YP, Zhang YJ, Gong WJ, Gopalan AI, Lee KP (2005) Rapid separation of Sudan dyes by reverse-phase high performance liquid chromatography through statistically designed experiments. J Chromatogr A 1098:183–187

    Article  CAS  PubMed  Google Scholar 

  73. Sivakumar T, Manavalan R, Muralidharan C, Valliappan K (2007) An improved HPLC method with the aid of a chemometric protocol: Simultaneous analysis of amlodipine and atorvastatin in pharmaceutical formulations. J Sep Sci 30:3143–3153

    Article  CAS  PubMed  Google Scholar 

  74. Sahoo DK, Sahu PK (2015) Chemometric Approach for RP-HPLC Determination of Azithromycin, Secnidazole, and Fluconazole Using Response Surface Methodology. J Liq Chromatogr Related Technol 38:750–758

    Article  CAS  Google Scholar 

  75. Kurmi M, Kumar S, Singh B, Singh S (2014) Implementation of design of experiments for optimization of forced degradation conditions and development of a stability indicating method for furosemide. J Pharm Biomed Anal 96:135–143

    Article  CAS  PubMed  Google Scholar 

  76. Gumieniczek A, Mączka P, Inglot T, Pietraś R, Lewkut E, Perczak K (2013) New HPLC method for in vitro dissolution study of antihypertensive mixture amlodipine and perindopril using an experimental design. Cent Eur J Chem 11:717–724

    CAS  Google Scholar 

  77. Tol T, Kadam N, Raotole N, Desai A, Samanta G (2016) A simultaneous determination of related substances by high performance liquid chromatography in a drug product using quality by design approach. J Chromatogr A 1432:26–38

    Article  CAS  PubMed  Google Scholar 

  78. Beg S, Sharma G, Katare OP, Lohan S, Singh B (2015) Development and validation of a stability-indicating liquid chromatographic method for estimating olmesartan medoxomil using quality by design. J Chromatogr Sci 53:1048–1059

    Article  CAS  PubMed  Google Scholar 

  79. J.M. Rodriguez-Nogales, M.C. Garcia, M.L. Marina, Monolithic Supports for the Characterization of Commercial Maize Products Based on Their Chromatographic Profile. Application of Experimental Design and Classification Techniques, J. Agric. Food Chem. 54 (2006) 1173–1179.

  80. Valliappan K, Kannan K, Manavalan R, Muralidharan C (2002) Prediction of chiral separation of ketoprofen using experimental design. Indian J Chem 41A:1334–1340

    CAS  Google Scholar 

  81. Schmidt AH, Stanic M, Molnár I (2014) In silico robustness testing of a compendial HPLC purity method by using of a multidimensional design space build by chromatography modeling—case study pramipexole. J Pharm Biomed Anal 91:97–107

    Article  CAS  PubMed  Google Scholar 

  82. Ganorkar SB, Dhumal DM, Shirkhedkar AA (2017) Development and validation of simple RP-HPLC-PDA analytical protocol for zileuton assisted with design of experiments for robustness determination. Arab J Chem 10:273–282

    Article  CAS  Google Scholar 

  83. César IDC, Pianetti GA (2009) Robustness evaluation of the chromatographic method for the quantitation of lumefantrine using Youden’s test. Braz J Pharm Sci 45:235–240

    Article  Google Scholar 

  84. Mannemala SS, Kannappan V (2015) Statistical design in optimization and robustness testing of a RP-HPLC method for determination of warfarin and its process-related impurities. J Iran Chem Soc 12:1325–1332

    Article  CAS  Google Scholar 

  85. Sandeep MS, Valliappan K (2016) Multiple response optimization of a liquid chromatographic method for determination of fluoro- quinolone and nitroimidazole antimicrobials in serum and urine. Clin Biochem 49:587–595

    Article  Google Scholar 

  86. Mitrowska K, Vincent U, von Holst C (2012) Separation and quantification of 15 carotenoids by reversed phase high performance liquid chromatography coupled to diode array detection with isosbestic wavelength approach. J Chromatogr A 1233:44–53

    Article  CAS  PubMed  Google Scholar 

  87. Krishna MV, Dash RN, Reddy BJ, Venugopal P, Sandeep P, Madhavi G (2016) Quality by design (QbD) approach to develop HPLC method for eberconazole nitrate: application to hydrolytic, thermal, oxidative and photolytic degradation kinetics. J Saudi Chem Soc 20:S313–S322

    Article  CAS  Google Scholar 

  88. Saroj S, Jairaj V, Rathod R (2017) Applying green analytical chemistry for development and validation of RP-HPLC stability indicating assay method for estimation of fenoverine in bulk and dosage form using quality by design approach. J Liq Chromatogr Relat Technol 40:340–352. https://doi.org/10.1080/10826076.2017.1304414

    Article  CAS  Google Scholar 

  89. Bapatu HR, Maram RK, Cho WH, Pasagadugula VBR (2016) QbD approach method development for estimation of dabigatran etexilate along with its impurities and identification of degradants in capsule dosage form. Am J Analyt Chem 7:494–524

    Article  CAS  Google Scholar 

  90. Dai S, Xu B, Zhang Y, Sun F, Li J, Cui Y, Shi X, Qiao Y (2016) Robust design space development for hplc analysis of five chemical components in panax notoginseng saponins. J Liq Chromatogr Relat Technol 39:504–512

    Article  CAS  Google Scholar 

  91. Milošević N, Vemić A, Olović J, Kostić N, Malenović A (2017) Design of experiments—design space approach for development of chaotropic chromatography method for determination of trimetazidine dihydrochloride and two impurities. Chromatographia 80:585–592

    Article  Google Scholar 

  92. Panda SS, Ravi Kumar BVV, Beg S, Sahu SK, Muni S (2016) Development and validation of a stability-indicating liquid chromatographic method for estimating vilazodone hydrochloride in pharmaceutical dosage form using quality by design. J Chromatogr Sci 54:1713–1722

    CAS  PubMed  Google Scholar 

  93. Sandhu PS, Beg S, Katare OP, Singh B (2016) QbD-driven development and validation of a HPLC method for estimation of tamoxifen citrate with improved performance. J Chromatogr Sci 54:1373–1384

    Article  CAS  PubMed  Google Scholar 

  94. Åsberg D, Lesko M, Samuelsson J, Karlsson A, Kaczmarski K, Fornstedt T (2016) Combining chemometric models with adsorption isotherm measurements to study omeprazole in RP-LC. Chromatographia 79:1283–1291

    Article  PubMed  PubMed Central  Google Scholar 

  95. Thakur D, Jain A, Ghoshal G, Shivhare US, Katare OP (2017) RP-HPLC method development using analytical QbD approach for estimation of cyanidin-3-O-glucoside in natural biopolymer based microcapsules and tablet dosage form. J Pharma Investig 47:413–427. https://doi.org/10.1080/10826076.2017.1304414

    Article  CAS  Google Scholar 

  96. Pantović J, Malenović A, Vemić A, Kostić N, Medenica M (2015) Development of liquid chromatographic method for the analysis of dabigatran etexilate mesilate and its ten impurities supported by quality-by-design methodology. J Pharm Biomed Anal 111:7–13

    Article  PubMed  Google Scholar 

  97. Sousa JPB, Nogueira EF, Ferreira LS, Lopes NP, Lopes JLC (2016) Validation of analytical procedures using HPLC-ELSD to determine six sesquiterpene lactones in Eremanthus species. Biomed Chromatogr 30:484–493

    Article  CAS  PubMed  Google Scholar 

  98. Thakur D, Kaur A, Sharma S (2017) Application of QbD based approach in method development of RP-HPLC for simultaneous estimation of antidiabetic drugs in pharmaceutical dosage form. J Pharma Investig 47:229–239. https://doi.org/10.1007/s40005-016-0256-x

    Article  CAS  Google Scholar 

  99. Armenta S, Garrigues S, De la Guardia M (2008) Green analytical chemistry. TrAC Trends Anal Chem 27:497–511

    Article  CAS  Google Scholar 

  100. Joshi VS, Kumar V, Rathore AS (2017) Optimization of ion exchange sigmoidal gradients using hybrid models: implementation of quality by design in analytical method development. J Chromatogr A 1491:145–152

    Article  CAS  PubMed  Google Scholar 

  101. Khalaf R, Heymann J, LeSaout X, Monard F, Costioli M, Morbidelli M (2016) Model based high-throughput design of ion exchange protein chromatography. J Chromatogr A 1459:67–77

    Article  CAS  PubMed  Google Scholar 

  102. Effio CL, Hahn T, Seiler J, Oelmeier SA, Asen I, Silberer C, Villain L, Hubbuch J (2016) Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles. J Chromatogr A 1429:142–154

    Article  Google Scholar 

  103. Shekhawat LK, Manvar AP, Rathore AS (2016) Enablers for QbD implementation: mechanistic modeling for ion-exchange membrane chromatography. J Membr Sci 500:86–98

    Article  CAS  Google Scholar 

  104. Mahrouse MA, Lamie NT (2019) Experimental design methodology for optimization and robustness determination in ion pair RP-HPLC method development: application for the simultaneous determination of metformin hydrochloride, alogliptin benzoate and repaglinide in tablets. Microchem J 147:691–706

    Article  CAS  Google Scholar 

  105. Kasagić-Vujanović I, Janić-Stojanović B, Rakić T, Ivanović D (2015) Design of experiments in optimization and validation of a hydrophilic interaction liquid chromatography method for determination of amlodipine besylate and bisoprolol fumarate. J Liq Chromatogr Relat Technol 38:919–928

    Article  Google Scholar 

  106. Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA (2017) Rapid method development in hydrophilic interaction liquid chromatography for pharmaceutical analysis using a combination of quantitative structure-retention relationships and design of experiments. Anal Chem 89:1870–1878

    Article  CAS  PubMed  Google Scholar 

  107. Maksić J, Tumpa A, Stajić A, Jovanović M, Rakić T, Janić-Stojanović B (2016) Hydrophilic interaction liquid chromatography in analysis of granisetron HCl and its related substances. Retention mechanisms and method development. J Pharm Biomed Anal 123:93–103

    Article  PubMed  Google Scholar 

  108. Jovanović M, Rakić T, Tumpa A, Stojanović BJ (2015) Quality by Design approach in the development of hydrophilic interaction liquid chromatographic method for the analysis of iohexol and its impurities. J Pharm Biomed Anal 110:42–48

    Article  PubMed  Google Scholar 

  109. Terzić J, Popović I, Stajić A, Tumpa A, Janić-Stojanović B (2016) Application of analytical quality by design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method. J Pharm Biomed Anal 125:385–393

    Article  PubMed  Google Scholar 

  110. Hanke AT, Klijn ME, Verhaert PDEM, van der Wielen LAM, Ottens M, Eppink MHM, van de Sandt EJAX (2016) Prediction of protein retention times in hydrophobic interaction chromatography by robust statistical characterization of their atomic-level surface properties. Biotechnol Prog 32:372–381

    Article  CAS  PubMed  Google Scholar 

  111. Tumpa A, Stajić A, Janić-Stojanović B, Medenica M (2017) Quality by design in the development of hydrophilic interaction liquid chromatography method with gradient elution for the analysis of olanzapine. J Pharm Biomed Anal 134:18–26

    Article  CAS  PubMed  Google Scholar 

  112. Pedroso TM, Medeiros ACD, Salgado HRN (2016) RP-HPLC x HILIC chromatography for quantifying ertapenem sodium with a look at green chemistry. Talanta 160:745–753

    Article  CAS  PubMed  Google Scholar 

  113. Li P, Xu G, Li SP, Wang YT, Fan TP, Zhao QS, Zhang QW (2008) Optimizing ultraperformance liquid chromatographic analysis of 10 diterpenoid compounds in salvia miltiorrhiza using central composite design. J Agric Food Chem 56:1164–1171

    Article  CAS  PubMed  Google Scholar 

  114. Noguerol-Cal R, Lopez-Vilarino JM, Victoria Gonzalez-Rodriguez M, Barral-Losada LF (2007) Development of an ultraperformance liquid chromatography method for improved determination of additives in polymeric materials. J Sep Sci 30:2452–2459

    Article  CAS  PubMed  Google Scholar 

  115. Song JZ, Qiao CF, Li SL, Zhou Y, Hsieh MT, Xu HX (2009) Rapid optimization of dual-mode gradient high performance liquid chromatographic separation of Radix et Rhizoma Salviae Miltiorrhizae by response surface methodology. J Chromatogr A 1216:7007–7012

    Article  CAS  PubMed  Google Scholar 

  116. Bousses C, Ferey L, Vedrines E, Gaudin K (2015) Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products. J Pharm Biomed Anal 115:114–122

    Article  CAS  PubMed  Google Scholar 

  117. Lafossas C, Benoit-Marquie F, Garrigues JC (2019) Analysis of the retention of tetracyclines on reversed-phase columns: chemometrics, design of experiments and quantitative structure-property relationship (QSPR) study for interpretation and optimization. Talanta 198(2019):550–559

    Article  CAS  PubMed  Google Scholar 

  118. Fekete S, Sadat-Noorbakhsh V, Schelling C, Molńar I, Guillarme D, Rudaz S, Veuthey J-L (2018) Implementation of a generic liquid chromatographic method development workflow: application to the analysis of phytocannabinoids and Cannabis sativa extracts. J Pharm Biomed Anal 155:116–124. https://doi.org/10.1016/j.jpba.2018.03.059

    Article  CAS  PubMed  Google Scholar 

  119. Molnár I, Zöldhegyi A, Rieger H-J, Kormány R, Rácza N (2018) Simultaneous optimization of mobile phase composition and pH using retention modeling and experimental design. J Pharm Biomed Anal 160:336–343

    Article  PubMed  Google Scholar 

  120. Murthy MV, Krishnaiah Ch, Srinivas K, Rao KS, Kumar NR, Mukkanti K (2013) Development and validation of RP-UPLC method for the determination of darifenacin hydrobromide, its related compounds and its degradation products using design of experiments. J Pharm Biomed Anal 72:40–50

    Article  CAS  PubMed  Google Scholar 

  121. Mendia OG, Blanco ME, Rico E, Alonso ML, Maguregui MI, Alonso RM (2017) Efficient method development and validation for the determination of cardiovascular drugs in human plasma by SPE–UHPLC–PDA–FLD. Chromatographia 80:605–615

    Article  Google Scholar 

  122. Szerkus O, Jacyna J, Wiczling P, Gibas A, Sieczkowski M, Siluk D, Matuszewski M, Kaliszan R, Markuszewski MJ (2016) Ultra-high performance liquid chromatographic determination of levofloxacin in human plasma and prostate tissue with use of experimental design optimization procedures. J Chromatogr B 1029–1030:48–59

    Article  Google Scholar 

  123. Beg S, Jain A, Kaur R, Panda SS, Katare OP, Singh B (2016) QbD-driven development and validation of an efficient bioanalytical UPLC method for estimation of olmesartan medoxomil. J Liq Chromatogr Relat Technol. https://doi.org/10.1080/10826076.2016.1206023

    Article  Google Scholar 

  124. Kochling J, Wu W, Hua Y, Guan Q, Castaneda-Merced J (2016) A platform analytical quality by design (AQbD) approach for multiple UHPLC-UV and UHPLC–MS methods development for protein analysis. J Pharm Biomed Anal 125:130–139

    Article  CAS  PubMed  Google Scholar 

  125. Oliva A, Monzón C, Santoveña A, Fariña JB, Llabrés M (2016) Development of an ultra high performance liquid chromatography method for determining triamcinolone acetonide in hydrogels using the design of experiments/design space strategy in combination with process capability index. J Sep Sci 39:2689–2701

    Article  CAS  PubMed  Google Scholar 

  126. Patel PN, Karakam VS, Samanthula G, Ragampeta S (2015) Quality-by-design-based ultra high performance liquid chromatography related substances method development by establishing the proficient design space for sumatriptan and naproxen combination. J Sep Sci 38:3354–3362

    Article  CAS  PubMed  Google Scholar 

  127. Zoldhegyi A, Rieger H-J, Molnar I, Fekhretdinova L (2018) Automated UHPLC separation of 10 pharmaceutical compounds using software-modeling. J Pharm Biomed Anal 156:379–388. https://doi.org/10.1016/j.jpba.2018.03.039

    Article  CAS  PubMed  Google Scholar 

  128. Armstrong DW, Henry SJ (1980) Use of an aqueous micellar mobile phase for separation of phenols and polynuclear aromatic hydrocarbons via HPLC. J Liq Chromatogr 3:657

    Article  CAS  Google Scholar 

  129. Otašević B, Šljivić J, Protić A, Maljurić N, Malenović A, Zečević M (2019) Comparison of AQbD and grid point search methodology in the development of micellar HPLC method for the analysis of cilazapril and hydrochlorothiazide dosage form stability. Microchem J 145:655–663. https://doi.org/10.1016/j.microc.2018.11.033

    Article  CAS  Google Scholar 

  130. Del Bubba M, Checchini L, Lepri L (2013) Thin-layer chromatography enantioseparations on chiral stationary phases: a review. Anal Bioanal Chem 405:533–554

    Article  PubMed  Google Scholar 

  131. Patel KG, Shah PM, Shah PA, Gandhi TR (2016) Validated high-performance thin-layer chromatographic (HPTLC) method for simultaneous determination of nadifloxacin, mometasone furoate, and miconazole nitrate cream using fractional factorial design. J Food Drug Anal 24:610–619

    Article  CAS  PubMed  Google Scholar 

  132. Patel KG, Shah PS, Gandhi TR (2016) Stability-indicating high-performance thin-layer chromatographic method for the estimation of ambroxol hydrochloride and doxofylline in a pharmaceutical formulation using experimental design in robustness study. J Planar Chromatogr 29:132–139

    Article  CAS  Google Scholar 

  133. Rageha AH, Abdel-Rahim SA, Askal HF, Saleh GA (2019) Hydrophilic-interaction planar chromatography in ultra-sensitive determination of α-aminocephalosporin antibiotics. Application to analysis of cefalexin in goat milk samples using modified QuEChERS extraction technique. J Pharm Biomed Anal 166:421–434

    Article  Google Scholar 

  134. Araújo AS, Andrade DF, Babos DV, Castro JP, Garcia JA, Sperança MA, Gamel RR, Machado RC, Costa VC, Guedes WN, Pereira-Filho ER, Pereira FMV (2021) Key information related to quality by design (QbD) applications in analytical methods development. Braz J Anal Chem 8:14–28. https://doi.org/10.30744/brjac.2179-3425.RV-27-2020

    Article  Google Scholar 

  135. Li M, Jiang Z, Guo X, Di X, Yu J (2021) Enantioseparation and modelling study of six proton pump inhibitors on a novel 3,5-dichloro-phenylcarbamated β-cyclodextrin chemically bonded chiral stationary phase by high performance liquid chromatography. Microchem J 166:106211

    Article  CAS  Google Scholar 

  136. Kannappan V, Kanthiah S (2017) Enantiopurity assessment of chiral switch of ondansetron by direct chiral HPLC. Chromatographia 80:229–236

    Article  CAS  Google Scholar 

  137. Costa CJM, Moreira CA, de Santana RC, Silva AJ, de Souza Teixeira Almeida JK, dos Santo MG (2021) Lactose quantification in UHT milk by high-performance liquid chromatography and cryoscopy (freezing point depression). Res Soc Dev 10(15):e454101523224. https://doi.org/10.33448/rsd-v10i15.23224

    Article  Google Scholar 

  138. de Souza APF, Rodrigues NR, Reyes FG (2021) Glyphosate and aminomethylphosphonic acid (AMPA) residues in Brazilian honey. Food Addit Contam Part B. https://doi.org/10.1080/19393210.2020.1855676

    Article  Google Scholar 

  139. Fouad MA, Elsabour SA, Elkady EF, Elshazly HM (2022) Design of experiment (DOE), multiple response optimization and utilizing the desirability function in the simultaneous HPLC separation of five antihypertensive drugs. J Iran Chem Soc 19:269–282. https://doi.org/10.1007/s13738-021-02316-7

    Article  CAS  Google Scholar 

  140. Roshdy A, Elmansi H, Shalan S, El-Brashy A (2021) Factorial design-assisted reversed phase-high performance liquid chromatography method for simultaneous determination of fluconazole, itraconazole and terbinafine. R Soc Open Sci 8:202130. https://doi.org/10.1098/rsos.202130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Salem WA, Elkady EF, Fouad MA, Mohammad MA-A (2021) Analysis of metformin and five gliptins in counterfeit herbal products: designs of experiment screening and optimization. J AOAC Int 104(6):1667–1680. https://doi.org/10.1093/jaoacint/qsab106

    Article  PubMed  Google Scholar 

  142. Hassan RM, Saleh OA, El-Azzouny AA, Aboul-Enein HY, Fouad MA (2021) Experimental design optimization of simultaneous enantiomeric separation of atenolol and chlorthalidone binary mixture by high-performance liquid chromatography using polysaccharide-based stationary phases. Chirality. https://doi.org/10.1002/chir.23315

    Article  PubMed  Google Scholar 

  143. Mohammad MA-A, Elkady EF, Fouad MA, Salem WA (2021) Analysis of aspirin, prasugrel and clopidogrel in counterfeit pharmaceutical and herbal products: Plackett–Burman screening and Box–Behnken optimization. J Chromatogr Sci 59:730–747. https://doi.org/10.1093/chromsci/bmaa113

    Article  CAS  PubMed  Google Scholar 

  144. El Deeb S, Silva CF, Junior CSN, Hanafi RS, Borges KB (2021) Chiral capillary electrokinetic chromatography: principle and applications, detection and identification, design of experiment, and exploration of chiral recognition using molecular modeling. Molecules 26:2841. https://doi.org/10.3390/molecules26102841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gritti F (2021) Perspective on the future approaches to predict retention in liquid chromatography. Anal Chem 93:5653–5664. https://doi.org/10.1021/acs.analchem.0c05078

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifa Latrous.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latrous, L. Optimization and Validation in Liquid Chromatography Using Design of Experiments. Chemistry Africa 5, 437–458 (2022). https://doi.org/10.1007/s42250-022-00344-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42250-022-00344-1

Keywords

Navigation