Skip to main content

Experimental Design Methodologies for the Optimization of Chiral Separations: An Overview

  • Protocol
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

Abstract

In this chapter, the application of design of experiments (DoE) for chiral separation optimization using supercritical fluid chromatography (SFC), liquid chromatography (LC), capillary electrophoresis (CE), and capillary electrochromatography (CEC) methods is reviewed. Both screening and optimization steps are covered, including a discussion of each aspect, such as factor-, level-, and response selection. Different designs are also presented, highlighting their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Factors are variables that can be varied in an independent manner from each other, e.g., pH, temperature, concentration [9, 12].

  2. 2.

    Levels are the values of a specific factor. Therefore, temperature (a factor), for example, can be evaluated at 30, 40, and 50 °C (levels) [9, 12].

  3. 3.

    Response is the measurable output from experiments, e.g., migration time, resolution [12].

  4. 4.

    Experimental domain is defined by the ranges of the factors levels [12].

References

  1. Calcaterra A, D’Acquarica I (2018) The market of chiral drugs: chiral switches versus de novo enantiomerically pure compounds. J Pharm Biomed Anal 147:323–340

    Article  CAS  Google Scholar 

  2. Stinson SC (1997) Chiral drug market shows signs of maturity. Chem Eng News 75:38–70

    Google Scholar 

  3. Agranat I, Caner H (1999) Intellectual property and chirality of drugs. Drug Discov Today 4:313–321

    Article  CAS  Google Scholar 

  4. Gübitz G, Schmid MG (2008) Chiral separation by capillary electromigration techniques. J Chromatogr A 1204:140–156

    Article  Google Scholar 

  5. Agranat I, Wainschtein SR, Zusman EZ (2012) The predicated demise of racemic new molecular entities is an exaggeration. Nat Rev Drug Discov 11:972–973

    Article  CAS  Google Scholar 

  6. Scriba GKE (2016) Chiral recognition in separation science—an update. J Chromatogr A 1467:56–78

    Article  CAS  Google Scholar 

  7. Płotka JM, Biziuk M, Morrison C, Namieśnik J (2014) Pharmaceutical and forensic drug applications of chiral supercritical fluid chromatography. Trends Anal Chem 56:74–89

    Article  Google Scholar 

  8. Candioti LV, De Zan MM, Cámara MS, Goicoechea HC (2014) Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 124:123–138

    Article  Google Scholar 

  9. Brynn Hibbert D (2012) Experimental design in chromatography: a tutorial review. J Chromatogr B 910:2–13

    Article  Google Scholar 

  10. Nguyen NK, Lin DKJ (2011) A note on small composite designs for sequential experimentation. J Stat Theory Pract 5:109–117

    Article  Google Scholar 

  11. Das AK, Mandal V, Mandal SC (2014) A brief understanding of process optimization in microwave-assisted extraction of botanical materials: options and opportunities with chemometric tools. Phytochem Anal 25:1–12

    Article  CAS  Google Scholar 

  12. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    Article  CAS  Google Scholar 

  13. Hanrahan G, Montes R, Gomez FA (2008) Chemometric experimental design based optimization techniques in capillary electrophoresis: a critical review of modern application. Anal Bioanal Chem 390:169–179

    Article  CAS  Google Scholar 

  14. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325

    Article  Google Scholar 

  15. Dejaegher B, Vander Heyden Y (2011) Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J Pharm Biomed Anal 56:141–158

    Article  CAS  Google Scholar 

  16. Hanafi RS, Lämmerhofer M (2018) Response surface methodology for the determination of the design space of enantiomeric separations on cinchona-based zwitterionic chiral stationary phases by high performance liquid chromatography. J Chromatogr A 1534:55–63

    Article  CAS  Google Scholar 

  17. Orlandini S, Pasquini B, Del Bubba M, Pinzauti S, Furlanetto S (2015) Quality by design in the chiral separation strategy for the determination of enantiomeric impurities: development of a capillary electrophoresis method based on dual cyclodextrin systems for the analysis of levosulpiride. J Chromatogr A 1380:177–185

    Article  CAS  Google Scholar 

  18. Orlandini S, Pasquini B, Caprini C, Del Bubba M, Douša M, Pinzauti S, Furlanetto S (2016) Enantioseparation and impurity determination of ambrisentan using cyclodextrin-modified micellar electrokinetic chromatography: visualizing the design space within quality by design framework. J Chromatogr A 1467:363–371

    Article  CAS  Google Scholar 

  19. Krait S, Douša M, Scriba GKE (2016) Quality by design-guided development of a capillary electrophoresis method for the chiral purity determination of ambrisentan. Chromatographia 79:1343–1350

    Article  CAS  Google Scholar 

  20. Meng R, Kang J (2017) Determination of the stereoisomeric impurities of sitafloxacin by capillary electrophoresis with dual chiral additives. J Chromatogr A 1506:120–127

    Article  CAS  Google Scholar 

  21. Patel DC, Wahab MF, Armstrong DW, Breitbach ZS (2016) Advances in high-throughput and high-efficiency chiral liquid chromatographic separations. J Chromatogr A 1467:2–18

    Article  CAS  Google Scholar 

  22. Declerck S, Vander Heyden Y, Mangelings D (2016) Enantioseparations of pharmaceuticals with capillary electrochromatography: a review. J Pharm Biomed Anal 130:81–99

    Article  CAS  Google Scholar 

  23. Zhu Q, Scriba GKE (2018) Analysis of small molecule drugs, excipients and counter ions in pharmaceuticals by capillary electromigration methods–recent developments. J Pharm Biomed Anal 147:425–438

    Article  CAS  Google Scholar 

  24. Ramos-Payán M, Ocaña-Gonzalez JA, Fernández-Torres RM, Llobera A, Bello-López MÁ (2018) Recent trends in capillary electrophoresis for complex samples analysis: a review. Electrophoresis 39:111–125

    Article  Google Scholar 

  25. Yolmeh M, Jafari SM (2017) Applications of response surface methodology in the food industry processes. Food Bioproc Tech 10:413–433

    Article  CAS  Google Scholar 

  26. Åsberg D, Enmark M, Samuelsson J, Fornstedt T (2014) Evaluation of co-solvent fraction, pressure and temperature effects in analytical and preparative supercritical fluid chromatography. J Chromatogr A 1374:254–260

    Article  Google Scholar 

  27. Chen Z, Dong F, Li S, Zheng Z, Xu Y, Xu J, Liu X, Zheng Y (2015) Response surface methodology for the enantioseparation of dinotefuran and its chiral metabolite in bee products and environmental samples by supercritical fluid chromatography/tandem mass spectrometry. J Chromatogr A 1410:181–189

    Article  CAS  Google Scholar 

  28. Forss E, Haupt D, Stålberg O, Enmark M, Samuelsson J, Fornstedt T (2017) Chemometric evaluation of the combined effect of temperature, pressure, and co-solvent fractions on the chiral separation of basic pharmaceuticals using actual vs set operational conditions. J Chromatogr A 1499:165–173

    Article  CAS  Google Scholar 

  29. Ghinet A, Zehani Y, Lipka E (2017) Supercritical fluid chromatography approach for a sustainable manufacture of new stereoisomeric anticancer agent. J Pharm Biomed Anal 145:845–853

    Article  CAS  Google Scholar 

  30. Landagaray E, Vaccher C, Yous S, Lipka E (2016) Design of experiments for enantiomeric separation in supercritical fluid chromatography. J Pharm Biomed Anal 120:297–305

    Article  CAS  Google Scholar 

  31. Kannappan V, Mannemala SS (2014) Multiple response optimization of a HPLC method for the determination of enantiomeric purity of S-ofloxacin. Chromatographia 77:1203–1211

    Article  CAS  Google Scholar 

  32. Kannappan V, Kanthiah S (2017) Enantiopurity assessment of chiral switch of ondansetron by direct chiral HPLC. Chromatographia 80:229–236

    Article  CAS  Google Scholar 

  33. Nistor I, Lebrun P, Ceccato A, Lecomte F, Slama I, Oprean R, Badarau E, Dufour F, Dossou KSS, Fillet M, Liégeois J-F, Hubert P, Rozet E (2013) Implementation of a design space approach for enantiomeric separations in polar organic solvent chromatography. J Pharm Biomed Anal 74:273–283

    Article  CAS  Google Scholar 

  34. Rosales-Conrado N, Guillén-Casla V, Pérez-Arribas LV, León-Gonzáles ME, Polo-Díez LM (2013) Simultaneous enantiomeric determination of acidic herbicides in apple juice samples by liquid chromatography on a teicoplanin chiral stationary phase. Food Anal Methods 6:535–547

    Article  Google Scholar 

  35. Rosales-Conrado N, Dell’Aica M, León-Gonzáles ME, Pérez-Arribas LV, Polo-Díez LM (2013) Determination of salbutamol by direct chiral reversed-phase HPLC using teicoplanin as stationary phase and its application to natural water analysis. Biomed Chromatogr 27:1413–1422

    Article  CAS  Google Scholar 

  36. Rosales-Conrado N, León-Gonzáles ME, Polo-Díez LM (2015) Development and validation of analytical method for clenbuterol chiral determination in animal feed by direct liquid chromatography. Food Anal Methods 8:2647–2659

    Article  Google Scholar 

  37. Saleh OA, Yehia AM, El-Azzouny AS, Aboul-Enein HY (2015) A validated chromatographic method for simultaneous determination of guaifenesin enantiomers and ambroxol HCl in pharmaceutical formulation. RSC Adv 5:93749–93756

    Article  CAS  Google Scholar 

  38. Szabó Z-I, Mohammadhassan F, Szőcs L, Nagy J, Komjáti B, Noszál B, Tóth G (2016) Stereoselective interactions and liquid chromatographic enantioseparation of thalidomide on cyclodextrin-bonded stationary phases. J Incl Phenom Macrocycl Chem 85:227–236

    Article  Google Scholar 

  39. Valliappan K, Vaithiyanathan SJ, Palanivel V (2013) Direct chiral HPLC method for the simultaneous determination of warfarin enantiomers and its impurities in raw material and pharmaceutical formulation: application of chemometric protocol. Chromatographia 76:287–292

    Article  CAS  Google Scholar 

  40. Abdel-Megied AM, Hanafi RS, Aboul Enein HY (2018) A chiral enantioseparation generic strategy for anti-Alzheimer and antifungal drugs by short end injection capillary electrophoresis using an experimental design approach. Chirality 30:165–176

    Article  CAS  Google Scholar 

  41. Albals D, Hendrickx A, Clincke L, Chankvetadze B, Vander Heyden Y, Mangelings D (2014) A chiral separation strategy for acidic drugs in capillary electrochromatography using both chlorinated and nonchlorinated polysaccharide-based selectors. Electrophoresis 35:2807–2818

    Article  CAS  Google Scholar 

  42. Escuder-Gilabert L, Martín-Biosca Y, Sagrado S, Medina-Hernández MJ (2014) Fast-multivariate optimization of chiral separations in capillary electrophoresis: anticipative strategies. J Chromatogr A 1363:331–337

    Article  CAS  Google Scholar 

  43. Guo PW, Rong ZB, Li YH, Fung YS, Gao GQ, Cai ZM (2013) Microfluidic chip capillary electrophoresis coupled with electrochemiluminescence for enantioseparation of racemic drugs using central composite design optimization. Electrophoresis 34:2962–2969

    CAS  PubMed  Google Scholar 

  44. Kazsoki A, Fejős I, Sohajda T, Zhou W, Hu W, Szente L, Béni S (2016) Development and validation of a cyclodextrin-modified capillary electrophoresis method for the enantiomeric separation of vildagliptin enantiomers. Electrophoresis 37:1318–1325

    Article  CAS  Google Scholar 

  45. Szabó Z-I, Szőcs MD-L, Noszál B, Tóth G (2016) Chiral separation of uncharged pomalidomide enantiomers using carboxymethyl-β-cyclodextrin: a validated capillary electrophoretic method. Chirality 28:199–203

    Article  Google Scholar 

  46. Szabó Z-I, Tóth G, Völgyi G, Komjáti B, Hancu G, Szente L, Sohajda T, Béni S, Muntean D-L, Noszál B (2016) Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling. J Pharm Biomed Anal 117:398–404

    Article  Google Scholar 

  47. Wahl J, Holzgrabe U (2018) Capillary electrophoresis separation of phenethylamine enantiomers using amino acid based ionic liquids. J Pharm Biomed Anal 148:245–250

    Article  CAS  Google Scholar 

  48. Cârcu-Dobrin M, Budău M, Hancu G, Gagyi L, Rusu A, Kelemen H (2017) Enantioselective analysis of fluoxetine in pharmaceutical formulations by capillary zone electrophoresis. Saudi Pharm J 25:397–403

    Article  Google Scholar 

  49. Zhang Q, Du Y (2013) Evaluation of the enantioselectivity of glycogen-based synergistic system with amino acid chiral ionic liquids as additives in capillary electrophoresis. J Chromatogr A 1306:97–103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Vander Heyden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Klein-Júnior, L.C., Mangelings, D., Vander Heyden, Y. (2019). Experimental Design Methodologies for the Optimization of Chiral Separations: An Overview. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_27

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics