Skip to main content

Advertisement

Log in

Optical characteristics of the novel nanosized thin ZnGa2S4 films sprayed at different deposition times: Determination of optical band-gap energy using different methods

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

This article has been allocated to studying microstructural features and optical properties of the novel sprayed polycrystalline thin ZnGa2S4 films. These novel films have been deposited on microscopic soda lime glass substrates at different deposition times (5, 10, 15, 20 min). The crystal structure, crystallinity degree and crystalline volume fraction have been studied using X-ray diffractograms. The stoichiometry of ZnGa2S4 films has been checked using energy dispersive X-ray analysis. The field-emission-scanning-electron microscope, SEM has been utilized to investigate the particle size and surface morphology of films. SEM micrographs showed that the particle size of these films increased from 21.231 nm to 75.569 nm as deposition time increased. Optical properties have been studied employing transmittance and reflectance spectra in the range 300–2500 nm. Very important optical parameters such as absorption coefficient, skin depth, Urbach energy, steepness parameters, and electron–phonon interactions have been extensively studied. The direct and indirect gap energy have been investigated by different models and compared with Tauc’s model. The optical band gap energy values slightly decrease from 4.10 to 3.70 eV as the deposition time increases. The hot-probe experiment validates our films’ propensity for acting as n-type semiconductors. The current findings recommend using these films in many Photovoltaic applications as a window layer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All the data and materials related to this manuscript are present with the authors and are ready to be submitted upon request.

References

  1. H.-J. Jeong, Y.-C. Kim, S.K. Lee, J.-H. Yun, J.-H. Jang, Enhanced spectral response of CIGS solar cells with anti-reflective subwavelength structures and quantum dots. Sol. Energy Mater. Sol. Cells. 194, 177–183 (2019)

    CAS  Google Scholar 

  2. D.H. Kim, C.P. Muzzillo, J. Tong, A.F. Palmstrom, B.W. Larson, C. Choi, S.P. Harvey, S. Glynn, J.B. Whitaker, F. Zhang, Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule. 3, 1734–1745 (2019)

    CAS  Google Scholar 

  3. W. Li, J.M.R. Tan, S.W. Leow, S. Lie, S. Magdassi, L.H. Wong, Recent progress in solution-processed copper-chalcogenide thin-film solar cells. Energy Technol. 6, 46–59 (2018)

    CAS  Google Scholar 

  4. R. Manivannan, S.N. Victoria, Preparation of chalcogenide thin films using electrodeposition method for solar cell applications–a review. Sol. Energy. 173, 1144–1157 (2018)

    CAS  Google Scholar 

  5. D. Lilhare, A. Khare, Development of chalcogenide solar cells: importance of CdS window layer. Opto-Electronics Rev. 28, 43–63 (2020)

    Google Scholar 

  6. A.S. Hassanien, A.A. Akl, Electrical transport properties and Mott’s parameters of chalcogenide cadmium sulphoselenide bulk glasses. J. Non-Cryst. Solids 432, 471–479 (2016)

    CAS  Google Scholar 

  7. A.A. Akl, A.S. Hassanien, Microstructure and crystal imperfections of nanosized CdSxSe1-x thermally evaporated thin films. Superlattices Microstruct. 85, 67–81 (2015)

    CAS  Google Scholar 

  8. A.S. Hassanien, A.A. Akl, Estimation of some physical characteristics of chalcogenide bulk Cd50S50- xSex glassy systems. J. Non-Crystalline Solids 428, 112–120 (2015)

    CAS  Google Scholar 

  9. G. Zhang, M. Zhu, L. Zhai, J. Cao, Z. Gao, T. Zeng, ThCr2Si2-type quaternary chalcogenides as efficient Pt-free counter electrodes for dye-sensitized solar cells. J. Alloys Compd. 817, 152797 (2020)

    CAS  Google Scholar 

  10. A.S. Hassanien, A.A. Akl, Influence of thermal and compositional variations on conduction mechanisms and localized state density of amorphous Cd50S50−xSex thin films. J. Non-Crystalline Solids 487, 28–36 (2018)

    CAS  Google Scholar 

  11. A.S. Hassanien, I. Sharma, Optical properties of quaternary a-Ge15-xSbxSe50Te35 thermally evaporated thin-films: refractive index dispersion and single oscillator parameters. Optik 200, 163415 (2020)

    CAS  Google Scholar 

  12. A.S. Hassanien, I. Sharma, A.A. Akl, Physical and optical properties of a-Ge-Sb-Se-Te bulk and film samples: Refractive index and its association with electronic polarizability of thermally evaporated a-Ge15-xSbxSe50Te35 thin-films. J. Non- crystalline Solids 531, 119853 (2020)

    CAS  Google Scholar 

  13. A.S. Hassanien, A.A. Akl, X-Ray Studies: CO2 pulsed laser annealing effects crystallography, microstructure and crystal defects vacuum deposited nanocrystalline ZnSe thin films. CrystEngComm 20, 7120–7129 (2018)

    CAS  Google Scholar 

  14. J. Zhang, W. Lian, Y. Yin, X. Wang, R. Tang, C. Qian, X. Hao, C. Zhu, T. Chen, all antimony chalcogenide tandem solar cell. Sol. RRL. 4, 2000048 (2020)

    CAS  Google Scholar 

  15. A.S. Hassanien, K.A. Aly, A.A. Akl, Optical properties of thermally evaporated ZnSe thin films annealed at different pulsed leaser powers. J. Alloy. Compd. 685, 733–742 (2016)

    CAS  Google Scholar 

  16. A.S. Hassanien, R. Neffati, K.A. Aly, Impact of Cd-addition upon optical properties and dispersion parameters of thermally evaporated CdxZn1-xSe films: discussions on bandgap engineering, conduction and valence band positions. Optik 212, 164681 (2020)

    CAS  Google Scholar 

  17. A.S. Hassanien, I. Sharma, Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15-xSbxSe50Te35 thin films: influences of Sb upon some optical characterizations and physical parameters. J. Alloy. Compd. 798, 750–763 (2019)

    CAS  Google Scholar 

  18. M. Nadarajah, K.S. Gour, V.N. Singh, Sputtered cadmium sulfide (CdS) buffer layer for kesterite and chalcogenide thin film solar cell (TFSC) Applications. J. Nanosci. Nanotechnol. 20, 3909–3912 (2020)

    CAS  Google Scholar 

  19. A. Stoliaroff, A. Lecomte, O. Rubel, S. Jobic, X. Zhang, C. Latouche, X. Rocquefelte, Deciphering the role of key defects in Sb2Se3, a promising candidate for chalcogenide-based solar cells. ACS Appl. Energy Mater. 3, 2496–2509 (2020)

    CAS  Google Scholar 

  20. K.S. Gour, R. Parmar, R. Kumar, V.N. Singh, Cd-Free Zn (O, S) as alternative buffer layer for chalcogenide and kesterite based thin films solar cells: a review. J. Nanosci. Nanotechnol. 20, 3622–3635 (2020)

    CAS  Google Scholar 

  21. A.A. Akl, I.M. El Radaf, A.S. Hassanien, Intensive comparative study using X-Ray diffraction for investigating microstructural parameters and crystal defects of the novel nanostructural ZnGa2S4 thin films. Superlattices Microstruct. 143, 106544 (2020)

    CAS  Google Scholar 

  22. I.M. El Radaf, H.Y.S. Al-Zahrani, A.S. Hassanien, Novel synthesis, structural, linear and nonlinear optical properties of p-type kesterite nanosized Cu2MnGeS4 thin films. J. Mater. Sci: Mater. Electron. 31, 8336–8348 (2020). https://doi.org/10.1007/s10854-020-03369-9

    Article  CAS  Google Scholar 

  23. A.A. Akl, S.A. Mahmoud, S.M. Al Shomar, A.S. Hassanien, improving microstructural properties and minimizing crystal imperfections of nanocrystalline Cu2O thin films of different solution molarities for solar cell applications. Mater. Sci. Semicond. Process. 74, 183–192 (2018)

    CAS  Google Scholar 

  24. A.S. Hassanien, A.A. Akl, Microstructure and crystal imperfections of nano-crystalline sprayed iridium oxides thin films. Physica B 473, 11–19 (2015)

    CAS  Google Scholar 

  25. A.A. Akl, Microstructure and electrical properties of iron oxide thin films deposited by spray pyrolysis. Appl. Surf. Sci. 221, 319–329 (2004)

    CAS  Google Scholar 

  26. A. Peterlin, Molecular model of drawing polyethylene and polypropylene. J. Mater. Sci. 6, 490–508 (1971)

    CAS  Google Scholar 

  27. P.B. Bowden, R.J. Young, Deformation mechanisms in crystalline polymers. J. Mater. Sci. 9, 2034–2051 (1974)

    CAS  Google Scholar 

  28. J.M. Haudin, Plastic deformation of semi-crystalline polymers, in Plastic deformation of amorphous and semi-crystalline materials. ed. by B. Escaig, C. G’Sell (Les Editions de Physique, Les Ulis, 1982), pp.291–311

    Google Scholar 

  29. L. Lin, A.S. Argon, Structure and plastic deformation of polyethylene. J. Mater. Sci. 29, 294–323 (1994)

    CAS  Google Scholar 

  30. J. Jia, D. Raabe, Crystallinity and crystallographic texture in isotactic polypropylene during deformation and heating; Soft Condensed Matter; 14 November 1–19, arXiv:0811.2412 (2008)

  31. A. Weidinger, P.H. Hermans, On the determination of the crystalline fraction of isotactic polypropylene from x-ray diffraction. Macromol Chem. Phys. 50, 98–115 (1961)

    CAS  Google Scholar 

  32. S.A. Mahmoud, A.A. Akl, S.M. Al-Shomar, Effect of some preparative parameters on optical properties of spray deposited iridium oxide thin films. Physica B 404, 2151–2158 (2009)

    CAS  Google Scholar 

  33. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, London, 1978)

    Google Scholar 

  34. J.T. Bonarski, W. Olek, Application of the crystalline volume fraction for characterizing the ultrastructural organization of wood. Cellulose 18, 223–235 (2011)

    Google Scholar 

  35. S. Huang, Structure and Structure Analysis of Amorphous Materials (Clarendon, Oxford, 1984), p. 48

  36. X.Y. Zhang, F.X. Zhang, J.W. Zhang, W. Yu, M. Zhang, J.H. Zhao, R.P. Liu, Y.F. Xu, W.K. Wang, Influence of pressures on the crystallization process of an amorphous Fe73.5Cu1Nb3Si13.5B9 alloy. J. Appl. Phys. 84, 1918 (1998)

    CAS  Google Scholar 

  37. T. Gloriant, M. Gich, S. Suri ach, M.D. Baro, A.L. Greer, evaluation of the volume fraction crystallised during devitrification of Al-based amorphous alloys. Mater. Sci. Forum 343⎯346, 365 (2000)

    Google Scholar 

  38. G.E. Abrosimov, A.S. Aronin, N.N. Kholstinina, On the determination of the volume fraction of the crystalline phase in amorphous-crystalline alloys. Phys. Solid State 52(3), 445–451 (2010)

    Google Scholar 

  39. L.C. Zhang, Z.Q. Shen, J. Xu, Glass formation in a (Ti, Zr, Hf)–(Cu, Ni, Ag)–Al high-order alloy system by mechanical alloying. J. Mater. Res. 18(9), 2141–2149 (2003)

    CAS  Google Scholar 

  40. C. Das, S. Ray, Onset of microcrystallinity in silicon thin films. Thin Solid Films 403 – 404, 81–85 (2002)

    Google Scholar 

  41. T. Sameshima, K. Saitoh, N. Aoyama, S. Higashi, M. Kondo, A. Matsuda, Electrical properties of pulsed laser crystallized silicon films. Japan. J. Appl. Phys. 38(48), 1892 (1999)

    CAS  Google Scholar 

  42. A.A. Ak, Influence of preparation conditions on the dispersion parameters of sprayed iron oxide thin films. Appl. Surf. Sci. 256, 7496–7750 (2010)

    Google Scholar 

  43. A.A. Akl, Optical properties of crystalline and non-crystalline iron oxide thin films deposited by spray pyrolysis. Appl. Surf. Sci. 233, 307–319 (2004)

    CAS  Google Scholar 

  44. J. Song, Y. He, J. Chen, D. Zhu, Z. Pan, Y. Zhang, J.-A. Wang, Bicolor lightemitting diode based on zinc oxide nanorod arrays and poly (2-methoxy, 5- octoxy)-1, 4-phenylenevinylene. J. Electron. Mater. 41, 431–436 (2012)

    CAS  Google Scholar 

  45. A.S. Hassanien, H.R. Alamri, I.M. El Radaf, Impact of film thickness on optical properties and optoelectrical parameters of novel CuGaGeSe4 thin films synthesized by electron beam deposition. Opt. Quant. Electron. 52, 335 (2020)

    CAS  Google Scholar 

  46. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    CAS  Google Scholar 

  47. O.S. Heavens, Optical properties of thin films, Dover, New York, 1965; O.S. Heavens, Thin Film Physics, Methuen, London, (1970)

  48. M. Born, E. Wolf, Principles of optics (Pergamon Press, Oxford, 1983)

    Google Scholar 

  49. A.S. Hassanien, A.A. Akl, Optical characteristics of iron oxide thin films prepared by spray pyrolysis technique at different substrate temperatures. Appl. Phys. A: Mater. Sci. Process. 124, 752 (2018)

    CAS  Google Scholar 

  50. M.S. Zoromba, M. Tashkandi, A. Alshehri, M. Abdel-Aziz, M. Bassyouni, S.A. Mahmoud, A.B. Slimane, A. Al-Hossainy, Polymer solar cell based on doped oanthranilic acid and o-aminophenol copolymer. Opt. Mater. 104, 109947 (2020)

    CAS  Google Scholar 

  51. I. Sharma, P. Sharma, A.S. Hassanien, Optical properties and optoelectrical parameters of the quaternary chalcogenide amorphous Ge15SnxS35-xTe50 films. J. Non-Crystalline Solids 590, 121673 (2022)

    CAS  Google Scholar 

  52. H.L. Mansour, K.A. Mishjil, N.F. Habubi, S.S. Chiad, Structural and optical properties of Cd0.4 Se0.6, thin films prepared by CBD. Thin Film Sci. Technol. 3, 57–60 (2014)

    Google Scholar 

  53. A.S. Hassanien, A.A. Akl, Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering technique at different flow rates of the reactive oxygen gas. Physica B 576, 411718 (2020)

    CAS  Google Scholar 

  54. A.L. Allred, Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215–221 (1961)

    CAS  Google Scholar 

  55. A.S. Hassanien, Studies on dielectric properties, opto-electrical parameters, and electronic polarizability of thermally evaporated amorphous Cd50S50-xSex thin films. J. Alloys Compd. 671, 566–578 (2016)

    CAS  Google Scholar 

  56. E.A. Davis, N.F. Mott, Electronic processes in non-crystalline materials (Clarendon Press, Oxford, 1971)

    Google Scholar 

  57. A.S. Hassanien, A.A. Akl, Effects of Se on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    CAS  Google Scholar 

  58. H. Khmissi, S.A. Mahmoud, A.A. Akl, Investigation of thermal annealing effect on the microstructure, morphology, linear and non-linear optical properties of spray deposited nanosized V2O5 thin films. Optik 227, 165979 (2021)

    CAS  Google Scholar 

  59. T.E. Whall, K.K. Yeung, Y.G. Proykova, V.A.M. Brabers, Electrical conductivity and thermoelectric power of nickel ferrous ferrite variable-range hopping and the Coulomb gap. Phil. Mag. B 54, 505–521 (1986)

    CAS  Google Scholar 

  60. J. Melsheimer, D. Ziegler, Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide. Thin Solid Films 129, 35–47 (1985)

    CAS  Google Scholar 

  61. S.J. Ikhmayies, R.N. Ahmad-Bitar, A study of the optical bandgap energy and Urbach tail of spray-deposited CdS: In thin films. J. Market. Res. 2, 221–227 (2013)

    CAS  Google Scholar 

  62. K.A. Aly, A.A. Elnaeim, M. Uosif, O. Abdel-Rahim, Optical properties of Ge–As– Te thin films. Physica B 406, 4227–4232 (2011)

    CAS  Google Scholar 

  63. S. Ikhmayies, R. Ahmad-Bitar, Thickness dependence of the bandgap energy and Urbach tail for CdS thin films prepared by vacuum evaporation, Proc. Eleventh World Renewable Energy Congress, Abu Dhabi, UAE Exhibit, 979– 98425, (2010)

  64. L. Kazmerski, Polycrystalline and amorphous thin films and devices. Academic Press (1980). https://doi.org/10.1016/B978-0-12-403880-6.X5001-3

    Article  Google Scholar 

  65. A.S. Hassanien, I. Sharma, P. Sharma, Inference of Sn addition on optical properties of the novel thermally evaporated thin a-Ge15Te50S35-xSnx films and some physical properties of their glasses. Mater. Chem. Phys. 293, 126887 (2023)

    CAS  Google Scholar 

  66. R. Mariappan, V. Ponnuswamy, M. Ragavendar, Characterization of CdS1− xSex thin films by chemical bath deposition technique. Optik 123, 1196–1200 (2012)

    CAS  Google Scholar 

  67. A. Abdel-Latif, H.M. Kotb, M. Hafiz, M. Dabban, Influence of heat treatment on the structural, optical and electrical properties of Cd20Sn10Se70 thin films. Mater. Sci. Semicond. Process. 30, 502–512 (2015)

    CAS  Google Scholar 

  68. A.S. Hassanien, I.M. El Radaf, A.A. Akl, Physical and optical studies of the novel non-crystalline CuxGe20-xSe40Te40 bulk glasses and thin films. J. Alloy. Compd. 849, 156718 (2020)

    CAS  Google Scholar 

  69. A.S. Hassanien, Intensive linear and nonlinear optical studies of thermally evaporated amorphous thin Cu-Ge-Se-Te films, Journal of Non-Crystalline Solids 586, 121563 (2022)

  70. J. Tauc, A. Menth, States in the gap. J Non-Crystalline Solids 8–10, 569–585 (1972)

    Google Scholar 

  71. A.S. Hassanien, I.M. El Radaf, Effect of fluorine doping on the structural, optical, and electrical properties of spray deposited Sb2O3 thin films. Mater. Sci. Semicond. Process. 160, 107405 (2023)

    CAS  Google Scholar 

  72. S.K. O’Learly, P.K. Lim, On determining the optical GAP associated with an amorphous semiconductor: A generalization of the Tauc model. Solid State Community 104, 17–21, 2 (1997)

    Google Scholar 

  73. A.S. Hassanien, I. Sharma, P. Sharma, Optical and dispersion studies of thin S35-xGe15SnxTe50 films: assessment of some physical parameters of samples, Phys. Scr. 98, 045911 (2023), https://doi.org/10.1088/1402-4896/acc2f9

  74. G.D. Cody, Hydrogenated Amorphous Silicon, Part B, Optical Properties, in Semiconductors and Semimetals, vol. 21, ed. by J.I. Pankove (Academic Press Inc., Orlando, 1984), pp. 1–433

  75. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials, 2nd edn. (Clarendon Press; Oxford University Press, Oxford, New York, 1979)

  76. E.N. Economou, M.H. Cohen, Anderson’s theory of localization and the Mott-CFO model. Mater. Res. Bull. 5(8), 577–590 (1970)

    CAS  Google Scholar 

  77. N.F. Mott, Metal-insulator transition. Rev. Mod. Phys. 40, 677 (1968)

    CAS  Google Scholar 

  78. G. Golan, A. Axelevitch, B. Gorenstein, V. Manevych, Hot-Probe method for evaluation of impurities concentration in semiconductors. Microchem. J. 37(9), 910–915 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Ahmed Saeed Hassanien: conceptualization, data curation, investigation, methodology, project administration, resources, software, validation, writing—original draft, writing—review & editing. supervision.

Alaa Ahmed Akl: conceptualization, data curation, formal analysis, methodology, software, resources, validation, writing—original draft, writing—review & editing.

I.M. El Radaf: conceptualization, data curation, formal analysis, funding acquisition, project administration, software, resources, writing—original draft, writing—review & editing.

Corresponding author

Correspondence to Ahmed Saeed Hassanien.

Ethics declarations

Ethics approval

The authors declare that the manuscript submitted is their own authorship and everyone who contributed with any effort has been mentioned in the list of authors. They also confirm that all recorded measurements were carried out by them. All measurements and calculations presented in the manuscript are specific to the samples themselves.

Consent to participate

The co-authors are consenting to participate in this submitted work. They confirm that no one except them have been participated in this article.

Consent for publication

The authors also confirm that they hope to publish this work in your reputed Journal.

Competing interests

The authors no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanien, A.S., Akl, A.A. & Redaf, I.M.E. Optical characteristics of the novel nanosized thin ZnGa2S4 films sprayed at different deposition times: Determination of optical band-gap energy using different methods. emergent mater. 6, 943–964 (2023). https://doi.org/10.1007/s42247-023-00493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00493-0

Keywords

Navigation