Skip to main content
Log in

Optical band-diagram, Urbach energy tails associated with photoluminescence emission in defected ZnO thin films deposited by sol–gel process dip-coating: effect of precursor concentration

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study employs zinc acetate as the precursor for synthesizing pure zinc oxide thin films through the sol–gel process. Comprehensive characterization and analysis were conducted using X-ray diffraction, field-emission scanning electron microscopy, ultraviolet–visible-infrared spectrophotometry, ellipsometry, and photoluminescence. The X-ray diffraction study confirms the hexagonal wurtzite polycrystalline structure of zinc oxide. Increasing the zinc precursor concentration resulted in a decrease in the observed intensity of diffraction lines, as revealed by XRD studies. Microstructural parameters such as crystallite size and micro-strain were determined using the Scherrer equation and the Williamson–Hall method. The Williamson–Hall method indicated an increase in crystallite size values from 28.3 to 36.9 nm, while micro-strain values decreased from 1.192 × 10−3 to 1.12 × 10−3 with an increase in zinc acetate concentration from 0.1 M to 0.5 M. Scanning electron microscopy images displayed connected microstructures with wrinkle network architectures influenced by the concentration of zinc acetate, consistent with the texture coefficient results. Optical characteristics were investigated in the 300–2500 nm range through transmission measurements and subsequent photoluminescence measurements. The optical band-gap energy was found to decrease from 3.33 to 3.21 eV and the band tail width (Urbach energy) decreased from 0.344 to 0.105 eV with an increase in zinc concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used in this study are available upon request from the corresponding author. Restrictions apply to the availability of these data, which were used under license for the current study and are not publicly available. However, data may be available from the authors upon reasonable request and with permission from the data owner.

References

  1. M. Shkir, Hakami, J. Milon Hossain, M. Awwad, N.S. and Khan, A. Excellent Photo-Detection Properties of Cerium Doped ZnO Device Fabricated by Spray Pyrolysis Technique. Inorg. Chem. Commun. 140, 109439 (2022).

  2. S. Lavanya, T. Rajesh Kumar, B. Prakash, R.S. Rimal Isaac, I.M. Ashraf, Siddhartha, M. Shkir, L. Kansal, H. Payal, S.S. Sehgal, Effect of Bi Doping on the Opto-Electronic Properties of ZnO Nanoparticles for Photodetector Applications. J. Photochem. Photobiol. A Chem. 446, 115119 (2024).

  3. M. Shkir, Enhancement in optical and electrical properties of ZnO thin films via Co doping for photodetector applications. Mater. Sci. Eng. B 284, 115861 (2022)

    CAS  Google Scholar 

  4. S. Sampath, V. Rohini, K. Chinnasamy, P. Ponnusamy, S. Thangarasau, W.K. Kim, M. Shkir, F. Maiz, Solvothermal synthesis of magnetically separable Co–ZnO nanowires for visible light driven photocatalytic applications. Phys. B Condens. Matter 652, 414654 (2023)

    CAS  Google Scholar 

  5. M. Shkir, B. Palanivel, A. Khan, M. Kumar, J.H. Chang, A. Mani, S. AlFaify, Enhanced photocatalytic activities of facile auto-combustion synthesized ZnO nanoparticles for wastewater treatment: an impact of Ni doping. Chemosphere 291, 132687 (2021)

    PubMed  Google Scholar 

  6. J. Shen, S. Fu, R. Su, H. Xu, F. Zeng, C. Song, F. Pan, Systematical study of the basic properties of surface acoustic wave devices based on ZnO and GaN multilayers. Electronics 10, 23 (2020)

    Google Scholar 

  7. M. Sheikh, M. Pazirofteh, M. Dehghani, M. Asghari, M. Rezakazemi, C. Valderrama, J.-L. Cortina, Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. J. Chem. Eng. 391, 123475 (2020)

    CAS  Google Scholar 

  8. R. Ahmad, S.M. Majhi, X. Zhang, T.M. Swager, K.N. Salama, Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Adv. Colloid Interface Sci. 270, 1–27 (2019)

    CAS  PubMed  Google Scholar 

  9. F. Rahman, Zinc oxide light-emitting diodes: a review. Opt. Eng. 58, 1 (2019)

    Google Scholar 

  10. W. Ouyang, J. Chen, Z. Shi, X. Fang, Self-powered UV photodetectors based on ZnO nanomaterials. Appl. Phys. Rev. 8, 3 (2021)

    Google Scholar 

  11. A. Wibowo, M.A. Marsudi, M.I. Amal, M.B. Ananda, R. Stephanie, H. Ardy, L.J. Diguna, ZnO nanostructured materials for emerging solar cell applications. RSC Adv. 10, 42838–42859 (2020)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. K. Kandpal, N. Gupta, J. Singh, C. Shekhar, Study of ZnO/BST interface for thin-film transistor (TFT) applications. Surf. Interfaces 23, 100996 (2021)

    CAS  Google Scholar 

  13. N.M. Noah, Current status and advancement of nanomaterials within polymeric membranes for water purification. Acs Appl. nano Mater. (2023). https://doi.org/10.1021/acsanm.3c04110

    Article  PubMed  PubMed Central  Google Scholar 

  14. J. Zhou, Z. Ren, S. Li, Z. Liang, C. Surya, H. Shen, Semi-transparent Cl-doped perovskite solar cells with graphene electrodes for tandem application. Mater. Lett. 220, 82–85 (2018)

    CAS  Google Scholar 

  15. M.S.A. Darwish, M.H. Mostafa, L.M. Al-Harbi, Polymeric nanocomposites for environmental and industrial applications. Int. J. Mol. Sci. 23, 3 (2022)

    Google Scholar 

  16. S. Thanikaikarasan, C. Amutha, B. Natarajan, D. Dhanasekaran, S. Rajkumar, Effect of capping agent on structure, composition, and optical properties of low-cost chemically deposited zinc oxide thin films and their antibacterial activities. Bioinorg. Chem. Appl. 2023, 1–12 (2023)

    Google Scholar 

  17. A.I. Meky, M.A. Hassaan, H.A. Fetouh, A.M. Ismail, A. El Nemr, Cube-shaped cobalt-doped zinc oxide nanoparticles with increased visible-light-driven photocatalytic activity achieved by green co-precipitation synthesis. Sci. Rep. 13, 1–24 (2023)

    Google Scholar 

  18. M. Hong, X. Zhang, Y. Geng, Y. Wang, X. Wei, L. Gao, H. Yu, Z. Cao, Z. Zhang, Y. Zhang, Universal transfer of full-class metal electrodes for barrier-free two-dimensional semiconductor contacts. InfoMat 6, e12491 (2023)

    Google Scholar 

  19. S.H. Zyoud, I.S. Yahia, M. Shahwan, A.H. Zyoud, Methylene Blue Using silver-doped zinc oxide submicron structures under blue laser irradiation. Crystals 13, 29 (2023)

    Google Scholar 

  20. C.-Q. Luo, F.C.-C. Ling, M.A. Rahman, M. Phillips, C. Ton-That, C. Liao, K. Shih, J. Lin, H.W. Tam, A.B. Djurišić, S.-P. Wang, Surface polarity control in ZnO films deposited by pulsed laser deposition. Appl. Surf. Sci. 483, 1129–1135 (2019)

    ADS  CAS  Google Scholar 

  21. N. Guermat, W. Daranfed, K. Mirouh, Extended Wide Band Gap Amorphous ZnO Thin Films Deposited by Spray Pyrolysis. Annales de Chimie - Science Des Matériaux. 44, 347–352 (2020)

    Google Scholar 

  22. F. Bocchese, D. Cornil, E. Haye, J. Cornil, S. Lucas, Three-zone model for Ti, Al co-doped ZnO films deposited by magnetron sputtering. Surfaces and Interfaces. 28, 101595 (2022)

    CAS  Google Scholar 

  23. A. Ait hssi, , E. Amaterz, N. Labchir, L. Atourki, I.Y. Bouderbala, A. Elfanaoui, A. Benlhachemi, A. Ihlal, and K. Bouabid, Electrodeposited ZnO nanorods as efficient photoanodes for the degradation of rhodamine B. physica status solidi (a), 217, 2000349 (2020).

  24. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, R. Closset, Structural and optical characterization of nitrogen and gallium co-doped ZnO thin films, deposited by sol-gel method. J. Mol. Struct. 1206, 127773 (2020)

    CAS  Google Scholar 

  25. D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev, and E. Kianfar, Nanomaterial by Sol-Gel Method: Synthesis and Application, Advances in Materials Science and Engineering. 2021, 1–21 (2021).

  26. A. Javidan, M. Ramezani, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, Synthesis, characterization, and magnetic property of monoferrite BaFe2O4 nanoparticles with aid of a novel precursor. J. Mater. Sci. Mater. Electron. 26, 3813–3818 (2015)

    CAS  Google Scholar 

  27. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, H.-M.S. Mostafa, ZnFe2−xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)

    CAS  Google Scholar 

  28. Y. Kim, J.-Y. Leem, Effects of precursor concentration on structural and optical properties of zno thin films grown on muscovite mica substrates by sol-gel spin-coating. J. Nanosci. Nanotechnol. 16, 5186–5189 (2016)

    CAS  PubMed  Google Scholar 

  29. R. Amari, A. Mahroug, A. Boukhari, B. Deghfel, N. Selmi, Structural, optical and luminescence properties of ZnO thin films prepared by sol-gel spin-coating method: effect of precursor concentration. Chin. Phys. Lett. 35, 016801 (2018)

    ADS  Google Scholar 

  30. M.F. Malek, M.H. Mamat, M.Z. Sahdan, M.M. Zahidi, Z. Khusaimi, M.R. Mahmood, Influence of various sol concentrations on stress/strain and properties of ZnO thin films synthesised by sol–gel technique. Thin Solid Films 527, 102–109 (2013)

    ADS  CAS  Google Scholar 

  31. J.S. Park, B.J. Kim, B.G. Seo, G.D. Han, K.H. Park, J. Koo, H.D. Park, J.H. Shim, Hetero-structured palladium-coated zinc oxide photocatalysts for sustainable water treatment. J. Water Process Eng. 45, 102488 (2022)

    Google Scholar 

  32. B.G. Seo, J. Park, B.J. Kim, G.D. Han, K.H. Park, H. Park, J.H. Shim, Hetero-structured palladium-coated zinc oxide photocatalysts for sustainable water treatment. ECS Meeting Abs. 243, 2407–2407 (2023)

    ADS  Google Scholar 

  33. A. Chatzigoulas, K. Karathanou, D. Dellis, Z. Cournia, NanoCrystal: a web-based crystallographic tool for the construction of nanoparticles based on their crystal habit. J. Chem. Inf. Model. 58, 2380–2386 (2018)

    CAS  PubMed  Google Scholar 

  34. A. Herbadji, I.Y. Bouderbala, L. Mentar, M.R. Khelladi, A. Azizi, The concentration effect of complexing agent on the morphology and optoelectronic properties of electrochemically deposited n-type Cu2O thin films. J. Electron. Mater. 48, 4830–4839 (2019)

    ADS  CAS  Google Scholar 

  35. I.Y. Bouderbala, A. Herbadji, L. Mentar, A. Beniaiche, A. Azizi, Optical properties of Cu2O electrodeposited on FTO substrates: effects of Cl concentration. J. Electron. Mater. 47, 2000–2008 (2018)

    ADS  CAS  Google Scholar 

  36. A. Sa’aedi, A.A. Akl, A.S. Hassanien, Effective role of Rb doping in controlling the crystallization, crystal imperfections, and microstructural and morphological features of ZnO-NPs synthesized by the sol–gel approach. CrystEngComm 24, 4661–4678 (2022)

    CAS  Google Scholar 

  37. A.S. Hassanien, A.A. Akl, X-ray studies: CO2 pulsed laser annealing effects on the crystallographic properties, microstructures and crystal defects of vacuum-deposited nanocrystalline ZnSe thin films. CrystEngComm 20, 7120–7129 (2018)

    CAS  Google Scholar 

  38. A.S. Hassanien, A.A. Akl, A.H. Sáaedi, Synthesis, crystallography, microstructure, crystal defects, and morphology of BixZn1−xO nanoparticles prepared by sol–gel technique. CrystEngComm 20, 1716–1730 (2018)

    CAS  Google Scholar 

  39. K. Kesavan, A. Kathalingam, H.S. Kim, A.U. Sundari, Effects of fluorine doping on structural, optical and electrical properties of spray deposited CdO thin films. Superlattices Microstruct. 100, 76–88 (2016)

    ADS  CAS  Google Scholar 

  40. D.V. Kurmude, R.S. Barkule, A.V. Raut, D.R. Shengule, K.M. Jadhav, X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J. Supercond. Novel Magn. 27, 547–553 (2014)

    CAS  Google Scholar 

  41. I.M. El Radaf, A.S. Hassanien, Effect of thickness on structural, optical, and optoelectrical properties of sprayed CuInSnS4 thin films as a new absorber layer for solar cells. Phys. B: Condens. 659, 414867 (2023)

    Google Scholar 

  42. A.S. Hassanien, I.M. El Radaf, Effect of fluorine doping on the structural, optical, and electrical properties of spray deposited Sb2O3 thin films. Mater. Sci. Semicond. Process. 160, 107405 (2023)

    CAS  Google Scholar 

  43. A.A. Akl, A.S. Hassanien, Comparative microstructural studies using different methods: Effect of Cd-addition on crystallography, microstructural properties, and crystal imperfections of annealed nano-structural thin CdxZn1-xSe films. Physica B 620, 413267 (2021)

    CAS  Google Scholar 

  44. A. Boumaiza, B. Boudine, M. Sebais, Fabrication and characterization of pure and Pb-doped ZnO thin films prepared by Sol-Gel and Dip-coeting method. J. Inorg. Organomet. Polym. Mater. 31, 3350–3355 (2021)

    CAS  Google Scholar 

  45. N. Hacini, M. Ghamnia, M.A. Dahamni, A. Boukhachem, J.-J. Pireaux, L. Houssiau, Compositional, structural, morphological, and optical properties of ZnO thin films prepared by PECVD technique. Coatings 11, 202 (2021)

    CAS  Google Scholar 

  46. J. Singh, S. Juneja, S. Palsaniya, K.M. Ashis, R.K. Soni, J. Bhattacharya, Evidence of oxygen defects mediated enhanced photocatalytic and antibacterial performance of ZnO nanorods. Colloids Surf. B 184, 110541 (2019)

    CAS  Google Scholar 

  47. S. Selvaraj, M.K. Mohan, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and photocatalytic activity of Gd doped ZnO nanoparticles for enhanced degradation of methylene blue under visible light. Mater. Sci. Semicond. Process. 103, 104622 (2019)

    CAS  Google Scholar 

  48. M.R. Islam, M. Rahman, S.F.U. Farhad, J. Podder, Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surf. Interfaces 16, 120–126 (2019)

    CAS  Google Scholar 

  49. N.V. Kaneva, D.T. Dimitrov, C.D. Dushkin, Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light. Appl. Surf. Sci. 257, 8113–8120 (2011)

    ADS  CAS  Google Scholar 

  50. G.W. Scherer, Sintering of sol-gel films. J Solgel Sci Technol. 8, 353–363 (1997)

    CAS  Google Scholar 

  51. S.J. Kwon, J.-H. Park, J.-G. Park, Wrinkling of a sol-gel-derived thin film. Phys. Rev. E 71, 011604 (2005)

    ADS  Google Scholar 

  52. M. Yilmaz, Ş Aydoğan, The effect of Pb doping on the characteristic properties of spin coated ZnO thin films: wrinkle structures. Mater. Sci. Semicond. Process. 40, 162–170 (2015)

    CAS  Google Scholar 

  53. R. Vettumperumal, S. Kalyanaraman, R. Thangavel, Effect of Er concentration on surface and optical properties of K doped ZnO sol–gel thin films. Superlattices Microstruct. 83, 237–250 (2015)

    ADS  CAS  Google Scholar 

  54. A. Boukhari, B. Deghfel, A. Mahroug, R. Amari, N. Selmi, S. Kheawhom, A.A. Mohamad, Thickness effect on the properties of Mn-doped ZnO thin films synthesis by sol-gel and comparison to first-principles calculations. Ceram. Int. 47, 17276–17285 (2021)

    CAS  Google Scholar 

  55. E.A. Daher, B. Riachi, J. Chamoun, C. Laberty-Robert, W. Hamd, New approach for designing wrinkled and porous ZnO thin films for photocatalytic applications. Colloids Surf. A Physicochem. Eng. Asp. 658, 130628 (2023)

    CAS  Google Scholar 

  56. I.Y. Bouderbala, A. Herbadji, L. Mentar, A. Azizi, Optical, structural, and photoelectrochemical properties of nanostructured Cl-doped Cu2O via electrochemical deposition. Solid State Sci. 83, 161–170 (2018)

    ADS  CAS  Google Scholar 

  57. K. Sowri Babu, A. Ramachandra Reddy, Ch. Sujatha, K. Venugopal Reddy, A.N. Mallika, Synthesis and optical characterization of porous ZnO. J. Adv. Ceram. 2, 260–265 (2013)

    CAS  Google Scholar 

  58. A.K. Zak, M.E. Abrishami, W.A. Majid, R. Yousefi, S.M. Hosseini, Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method. Ceram. Int. 37, 393–398 (2011)

    CAS  Google Scholar 

  59. G. Tang, H. Liu, W. Zhang, The variation of optical band gap for ZnO. in films prepared by sol-gel technique. Adv. Mater. Sci. Eng. 2013, 1–4 (2013)

    Google Scholar 

  60. A.S. Hassanien, I.M. El Radaf, Effectiveness of Sn-addition on optical properties and physicochemical parameters of SnxSb2-xSe3 thin films. Mater. Chem. Phys. 303, 127827 (2023)

    CAS  Google Scholar 

  61. A.S. Hassanien, I. Sharma, P. Sharma, Inference of Sn addition on optical properties of the novel thermally evaporated thin a-Ge15Te50S35-xSnx films and some physical properties of their glasses. Mater. Chem. Phys. 293, 126887 (2023)

    CAS  Google Scholar 

  62. M. Ilkhani, L. Dejam, Structural and optical properties of ZnO and Ni:ZnO thin films: the trace of post-annealing. J. Mater. Sci. Mater. Electron. 32, 3460–3474 (2021)

    CAS  Google Scholar 

  63. A. El-Denglawey, K.A. Aly, A. Dahshan, A.S. Hassanien, Optical characteristics of thermally evaporated thin a-(Cu2ZnGe)50−xSe50+x films. ECS J. Solid State Sci. Technol. 11, 044006 (2022)

    ADS  CAS  Google Scholar 

  64. A.S. Hassanien, I. Sharma, P. Sharma, Optical and dispersion studies of thin S35-xGe15SnxTe50 films: assessment of some physical parameters of samples. Phys. Scr. 98, 045911 (2023)

    ADS  Google Scholar 

  65. Y. Cahyono, F.D. Muttaqin, U. Maslakah, Annealing treatment of a-Si: H films deposited by PECVD and their properties. IOP Conf. Series Mater. Sci. Eng. 196, 012038 (2017)

    Google Scholar 

  66. A.S. Hassanien, A.A. Akl, I.E. Redaf, Optical characteristics of the novel nanosized thin ZnGa2S4 films sprayed at different deposition times: determination of optical band-gap energy using different methods. Emergent mater. 6, 943–964 (2023)

    CAS  Google Scholar 

  67. L. Dejam, J. Sabbaghzadeh, A. Ghaderi, S. Solaymani, R.S. Matos, Ș Țălu, D.F.F. Henrique, H.S. Amir, K. Hanieh, A.H.S. Shayegan, M.A. Doudaran, Advanced nano-texture, optical bandgap, and Urbach energy analysis of NiO/Si heterojunctions. Sci. Rep. 13, 6518 (2023)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. A. Herbadji, I.Y. Bouderbala, L. Mentar, A. Azizi, Effect of copper sulfate concentration on the electrochemical nucleation process, growth and properties of n-type Cu2O thin films. Russ. J. Electrochem. 55, 1336–1349 (2019)

    CAS  Google Scholar 

  69. A.S. Hassanien, K.A. Aly, H.I. Elsaeedy, A. Alqahtani, Optical characterization and dispersion discussions of the novel thermally evaporated thin a-S50-xGe10CdxTe40 films. Appl. Phys. A 128, 1021 (2022)

    ADS  CAS  Google Scholar 

  70. A.S. Hassanien, Intensive linear and nonlinear optical studies of thermally evaporated amorphous thin Cu-Ge-Se-Te films. J. Non-Cryst. Solids 586, 121563 (2022)

    CAS  Google Scholar 

  71. K. Davis, R. Yarbrough, M. Froeschle, J. White, H. Rathnayake, Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth. RSC Adv. 9, 14638–14648 (2019)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. X. Chen, Q. Xie, J. Li, Significantly improved photoluminescence properties of ZnO thin films by lithium doping. Ceram. Int. 46, 2309–2316 (2020)

    CAS  Google Scholar 

  73. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. Nanoscale 6, 10224–10234 (2014)

    ADS  CAS  PubMed  Google Scholar 

  74. M. Baneto, A. Enesca, Y. Lare, K. Jondo, K. Napo, A. Duta, Effect of precursor concentration on structural, morphological and opto-electric properties of ZnO thin films prepared by spray pyrolysis. Ceram. Int. 40, 8397–8404 (2014)

    CAS  Google Scholar 

  75. J.L. Lyons, J.B. Varley, D. Steiauf, A. Janotti, C.G. Van de Walle, First-principles characterization of native-defect-related optical transitions in ZnO. J. Appl. Phys. 122, 3 (2017)

    Google Scholar 

  76. J. Li, D. Yang, X. Zhu, Effects of aging time and annealing temperature on structural and optical properties of sol-gel ZnO thin films. Aip Adv. 7, 6 (2017)

    Google Scholar 

  77. N. Srinatha, P. Raghu, H.M. Mahesh, B. Angadi, Spin-coated Al-doped ZnO thin films for optical applications: structural, micro-structural, optical and luminescence studies. J. Alloys Compd. 722, 888–895 (2017)

    CAS  Google Scholar 

  78. R. Amiruddin, M.C.S. Kumar, Enhanced visible emission from vertically aligned ZnO nanostructures by aqueous chemical growth process. J. Lumin. 155, 149–155 (2014)

    CAS  Google Scholar 

  79. J.F. Wager, Real-and reciprocal-space attributes of band tail states. AIP Adv. 7, 12 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ibrahim Yaacoub Bouderbala: conceptualization, methodology, and writing—original draft. Amir Guessoum: data curation, formal analysis, and visualization. Rabhi Selma: investigation, writing—review and editing, and supervision. Bouhlassa Omeyma: investigation, writing—review and editing. Bouras Imed-Eddine: validation, writing—review and editing, and visualization.

Corresponding author

Correspondence to Ibrahim Yaacoub Bouderbala.

Ethics declarations

Conflict of interest

The authors declare that they have no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouderbala, I.Y., Guessoum, A., Rabhi, S. et al. Optical band-diagram, Urbach energy tails associated with photoluminescence emission in defected ZnO thin films deposited by sol–gel process dip-coating: effect of precursor concentration. Appl. Phys. A 130, 205 (2024). https://doi.org/10.1007/s00339-024-07366-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07366-1

Keywords

Navigation