Skip to main content
Log in

A short review on the preparation and use of iron nanomaterials for the treatment of pollutants in water and soil

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Iron-based nanomaterials are increasingly used in environmental applications. Different types of iron-based nanomaterials, namely, zerovalent iron nanoparticles, nanoparticles of iron oxides, and nanoparticles prepared from iron salts and natural extracts by green procedures, are briefly indicated in this short review, together with their preparation, characterization, and applications in the treatment of pollutants in water and soils, with emphasis on the works performed in the last 10 years. The present short review will focus on the preparation and recent advancements (last 10 years) in the application of iron-based nanoparticles on the removal of pollutants in water (mainly) and soils. In terms of preparation, top-down procedures such as mechanical milling, nanolithography, laser ablation, sputtering, and thermal decomposition and bottom-up methods such as chemical synthesis, sol–gel, spinning, chemical vapor deposition (CVD), pyrolysis, and biosynthesis are indicated for nanoparticle production. The most commonly used nanomaterials are inorganic nanoparticles based on metal and metal oxides and, among them, iron-based materials have been widely used on the removal of pollutants in water. Among pollutants, halogenated organics; nitroaromatics; pesticides; dyes; antibiotics; halogenated aromatics; phenolic compounds; PCBs; inorganic anions such as nitrate and heavy metals and metalloids (e.g., Hg, Pb, Cr, Cu, As, Ni, Zn, Cd, and Ag); radioisotopes of Ba, TcO4, and U; and antibacterial activity against Gram-positive and negative bacteria have been successfully treated. In some cases, iron-based nanoparticles have been combined with H2O2 in Fenton processes. The advantages of using these materials and the need for their improvement to extend their deployment are remarked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.D. Krishna, K. Wu, D. Su, M.C.J. Cheeran, J.-P. Wang, A. Perez, Nanotechnology: review of concepts and potential application of sensing platforms in food safety. Food Microbiol. 75, 47–54 (2018). https://doi.org/10.1016/j.fm.2018.01.025

    Article  CAS  Google Scholar 

  2. M.I. Litter, The story and future of nanoparticulated iron materials, in: Iron Nanomaterials for Water and Soil Treatment, ed. by M.I. Litter, N. Quici, M. Meichtry, Pan Stanford Publishing Pte. Ltd., Singapore (2018) pp. 1–16. https://www.routledge.com/Iron-Nanomaterials-for-Water-and-Soil-Treatment/Litter-Quici-Meichtry/p/book/9789814774673

  3. D. Maclurcan, N. Radywyl, Nanotechnology and Global Sustainability Perspectives in Nanotechnology (CRC Press, 2012).

  4. J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne, M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9, 1050–1074 (2018). https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  5. W.X. Zhang, Nanoscale iron particles for environmental remediation: an overview. J. Nanoparticle Res. 5, 323–332 (2003). https://doi.org/10.1023/A:1025520116015

    Article  CAS  Google Scholar 

  6. B.I. Kharisov, H.V. Rasika Dias, O.V. Kharissova, V.M. Jiménez-Pérez, B. Olvera Pérez, B.M. Flores, Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Adv 2, 9325–9358 (2012). https://doi.org/10.1039/C2RA20812A

    Article  CAS  Google Scholar 

  7. R.A. Crane, T.B. Scott, Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J. Hazard. Mater. 211–212, 112–125 (2012). https://doi.org/10.1016/j.jhazmat.2011.11.073

    Article  CAS  Google Scholar 

  8. D. O’Carroll, B. Sleep, M. Krol, H. Boparai, C. Kocur, Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 51, 104–122 (2013). https://doi.org/10.1016/j.advwatres.2012.02.005

    Article  CAS  Google Scholar 

  9. S.J. Tesh, T.B. Scott, Nano-composites for water remediation: a review. Adv. Mater. 26, 6056–6068 (2014). https://doi.org/10.1002/adma.201401376

    Article  CAS  Google Scholar 

  10. F.L. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J. Hazard. Mater. 267, 194–205 (2014). https://doi.org/10.1016/j.jhazmat.2013.12.062

    Article  CAS  Google Scholar 

  11. A. Thomé, K.R. Reddy, C. Reginatto, I. Cecchin, Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air Soil Pollut. 226, 121 (2015). https://doi.org/10.1007/s11270-014-2243-z

    Article  CAS  Google Scholar 

  12. Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, X. Wang, Environmental remediation and application of nanoscale zerovalent iron and its composites for the removal of heavy metal ions: a review. Environ. Sci. Technol. 50, 7290–7304 (2016). https://doi.org/10.1021/acs.est.6b01897

    Article  CAS  Google Scholar 

  13. X. Zhao, W. Liu, Z. Cai, B. Han, T. Qian, D. Zhao, An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 100, 245–266 (2016). https://doi.org/10.1016/j.watres.2016.05.019

    Article  CAS  Google Scholar 

  14. M. Stefaniuk, P. Oleszczuk, Y.S. Ok, Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chem. Eng. J. 287, 618–632 (2016). https://doi.org/10.1016/j.cej.2015.11.046

    Article  CAS  Google Scholar 

  15. Y. Xie, H. Dong, G. Zeng, L. Tang, Z. Jiang, C. Zhang, J. Deng, L. Zhang, Y. Zhang, The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: a review. J. Hazard. Mater. 321, 390–407 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.028

    Article  CAS  Google Scholar 

  16. S. Li, W. Wang, F. Liang, W.-X. Zhang, Heavy metal removal using nanoscale zero-valent iron (nZVI): theory and application. J. Hazard. Mater. 322, 163–171 (2017). https://doi.org/10.1016/j.jhazmat.2016.01.032

    Article  CAS  Google Scholar 

  17. Naveen Priya, K. Kaur, A.K. Sidhu, Green synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles. Front. Nanotechnol. 3, 655062 (2021). https://doi.org/10.3389/fnano.2021.655062

    Article  Google Scholar 

  18. R. Araújo, A.C. Meira Castro, A. Fiúza, The use of nanoparticles in soil and water remediation processes. Mater. Today Proc. 2, 315–320 (2015). https://doi.org/10.1016/j.matpr.2015.04.055

    Article  Google Scholar 

  19. Md. Rizwan, M. Singh, C.K. Mitra, R.K. Morve, Ecofriendly application of nanomaterials: nanobioremediation. J. Nanoparticles 2014, 431787 (2014). https://doi.org/10.1155/2014/431787

    Article  CAS  Google Scholar 

  20. H.-J. Lu, J.-K. Wang, S. Ferguson, T. Wang, Y. Baoab, H.-X. Hao, Mechanism, synthesis and modification of nano zerovalent iron in water treatment. Nanoscale 8, 9962–9975 (2016). https://doi.org/10.1039/C6NR00740F

    Article  CAS  Google Scholar 

  21. A. Galdames, L. Ruiz-Rubio, M. Orueta, M. Sánchez-Arzalluz, J.L. Vilas-Vilela, Zero-valent iron nanoparticles for soil and groundwater remediation. Int. J. Environ. Res. Public Health 17, 5817 (2020). https://doi.org/10.3390/ijerph17165817

    Article  CAS  Google Scholar 

  22. A.M. Ealia, M.P. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application, 14th ICSET-2017 IOP Publishing IOP Conf. Series: Mater. Sci. Eng. 263, 032019 (2017). https://doi.org/10.1088/1757-899X/263/3/032019

  23. P. Iqbal, J.A. Preece, P.M. Mendes, Nanotechnology: the “top-down” and “bottom-up” approaches. In Supramolecular Chemistry, John Wiley & Sons, Ltd.: Chichester, UK, (2012).

  24. T. Pasinszki, M. Krebsz, Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials 10, 917 (2020). https://doi.org/10.3390/nano10050917

    Article  CAS  Google Scholar 

  25. C.B. Wang, W.X. Zhang, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31, 2154–2156 (1997). https://doi.org/10.1021/es970039c

    Article  CAS  Google Scholar 

  26. H.I. Schlesinger, H.C. Brown, A.E. Finholt, J.R. Gilbreath, H.R. Hoekstra, E.K. Hyde, Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J. Am. Chem. Soc. 75, 215–219 (1953). https://doi.org/10.1021/ja01097a057

    Article  CAS  Google Scholar 

  27. H.C. Brown, C.A. Brown, A simple preparation of highly active platinum metal catalysts for catalytic hydrogenation. J. Am. Chem. Soc. 84, 1494–1495 (1962). https://doi.org/10.1021/ja00867a035

    Article  CAS  Google Scholar 

  28. L. Parimala, J. Santhanalakshmi, Studies on the iron nanoparticles catalyzed reduction of substituted aromatic ketones to alcohols. J. Nanoparticles 156868 (2014). https://doi.org/10.1155/2014/156868

  29. N.D. Meeks, V. Smuleac, C. Stevens, D. Bhattacharyya, Iron-based nanoparticles for toxic organic degradation: silica platform and green synthesis, Ind. Eng. Chem. Res. 51, 9581–9590 (2012). https://pubs.acs.org/doi/abs/10.1021/ie301031u

  30. Q. Sun, A.J. Feitz, J. Guan, T.D. Waite, Comparison of the reactivity of nanosized zero valent iron (nZVI) particles produced by borohydride and dithionite reduction of iron salts. Nano: Brief. Rep. Rev. 3, 341–349 (2008). https://doi.org/10.1142/S1793292008001179

    Article  CAS  Google Scholar 

  31. X. Ma, D. He, A.M. Jones, R.N. Collins, T.D. Waite, Reductive reactivity of borohydride- and dithionite-synthesized iron-based nanoparticles: a comparative study. J. Hazard. Mater. 303, 101–110 (2016). https://doi.org/10.1016/j.jhazmat.2015.10.009

    Article  CAS  Google Scholar 

  32. G. Kozma, A. Rónavári, Z. Kónya, Á. Kukovecz, Environmentally benign synthesis methods of zero-valent iron nanoparticles. ACS Sustainable Chem. Eng. 4, 291–297 (2016). https://doi.org/10.1021/acssuschemeng.5b01185

    Article  CAS  Google Scholar 

  33. Y. Li, J.L. Wang, Z.L. Wang, Preparation of monodispersed Fe-Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem. Mater. 13, 1008–1014 (2001). https://doi.org/10.1021/cm000787s

    Article  CAS  Google Scholar 

  34. T.W. Smith, D. Wychick, Colloidal iron dispersions prepared via the polymer-catalyzed decomposition of iron pentacarbonyl. J. Phys. Chem. 84, 1621–1629 (1980). https://doi.org/10.1021/j100449a037

    Article  CAS  Google Scholar 

  35. C.H. Griffiths, M.P. O’Horo, T.W. Smith, The structure, magnetic characterization, and oxidation of colloidal iron dispersions. J. Appl. Phys. 50, 7108–7115 (1979). https://doi.org/10.1063/1.325819

    Article  CAS  Google Scholar 

  36. M. Uegami, J. Kawano, T. Okita, Y. Fujii, K. Okinaka, K. Kakuya, S. Yatagai, Iron particles for purifying contaminated soil or ground water. European Patent Application EP 1 318 103 A2 (2003).

  37. J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, M.D. Driessen, Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39, 1221–1230 (2005). https://doi.org/10.1021/es049190u

    Article  CAS  Google Scholar 

  38. W.X. Zhang, C.B. Wang, H.L. Lien, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 40, 387–395 (1998). https://doi.org/10.1016/S0920-5861(98)00067-4

    Article  CAS  Google Scholar 

  39. M.I. Litter, Future and perspectives of the use of iron nanoparticles for water and soil remediation, in: “Iron Nanomaterials for Water and Soil Treatment”, M.I. Litter, N. Quici, M. Meichtry (Eds), Pan Stanford Publishing Pte. Ltd., Singapore, 2018, Chapter 13, https://www.routledge.com/Iron-Nanomaterials-for-Water-and-Soil-Treatment/Litter-Quici-Meichtry/p/book/9789814774673. pp. 307–316.

  40. T. Asefa Aragaw, F.M. Bogale, B. Asefa Aragaw, Iron-based nanoparticles in wastewater treatment: a review on synthesis methods, applications, and removal mechanisms. J. Saudi Chem. Soc. 25(101280), 2021 (2021). https://doi.org/10.1016/j.jscs.2021.1012801319-6103_2021

    Article  Google Scholar 

  41. L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012). https://doi.org/10.1021/cr300068p

    Article  CAS  Google Scholar 

  42. A.D. Gupta, E.R. Rene, B.S. Giri, A. Pandey, H. Singh, Adsorptive and photocatalytic properties of metal oxides towards arsenic remediation from water: a review. J. Environ. Chem. Eng. 9, 106376 (2021). https://doi.org/10.1016/j.jece.2021.106376

    Article  CAS  Google Scholar 

  43. K. Petcharoen, A. Sirivat, Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 177, 421–427 (2012). https://doi.org/10.1016/j.mseb.2012.01.003

    Article  CAS  Google Scholar 

  44. P.N. Dave, L.V. Chopda, Application of iron oxide nanomaterials for the removal of heavy metals, J. Nanotechnol., 398569 (2014). https://doi.org/10.1155/2014/398569

  45. Y.C. López, M. Antuch, Morphology control in the plant-mediated synthesis of magnetite nanoparticles. Curr. Opin. Green Sustain. Chem. 24, 32–37 (2020). https://doi.org/10.1016/j.cogsc.2020.02.001

    Article  Google Scholar 

  46. T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001). https://doi.org/10.1021/ja016812s

    Article  CAS  Google Scholar 

  47. S. Belaid, S. Laurent, M. Vermeersch, L.V. Elst, D.P. Morga, R.N. Muller, A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition. Nanotechnology 24, 055705 (2013). https://doi.org/10.1088/0957-4484/24/5/055705

    Article  CAS  Google Scholar 

  48. A.G. Nene, M. Takahashi, P.R. Somani, Fe3O4 and Fe nanoparticles by chemical reduction of Fe(acac)3 by ascorbic acid: role of water. World J. Nano Sci. Eng. 6, 20–28 (2016). https://doi.org/10.4236/wjnse.2016.61002

    Article  Google Scholar 

  49. B.C. Faust, M.R. Hoffmann, D.W. Bahnemann, Photocatalytic oxidation of sulfur dioxide in aqueous suspensions of α-Fe2O3. J. Phys. Chem. 93, 6371–6381 (1989). https://doi.org/10.1021/J100354A021

    Article  CAS  Google Scholar 

  50. C. Baumanis, J.Z. Bloh, R. Dillert, D.W. Bahnemann, Hematite photocatalysis: dechlorination of 2,6-dichloroindophenol and oxidation of water. J. Phys. Chem. C 115, 25442–25450 (2011). https://doi.org/10.1021/jp210279r

    Article  CAS  Google Scholar 

  51. E.C. Njagi, H. Huang, L. Stafford, H. Genuino, H. Galindo, J. Collins, G. Hoag, S. Suib, Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 27, 264–271 (2010). https://doi.org/10.1021/la103190n

    Article  CAS  Google Scholar 

  52. T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyac, A. Eroglu, T. Scott, K. Hallam, Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172, 258–266 (2011). https://doi.org/10.1016/j.cej.2011.05.103

    Article  CAS  Google Scholar 

  53. R. Smuleac, S. Varma, D. Sikdar, D. Bhattacharyya, Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J. Memb. Sci. 379, 131–137 (2011). https://doi.org/10.1016/j.memsci.2011.05.054

    Article  CAS  Google Scholar 

  54. M.K. Kumar, B.K. Mandal, K.S. Kumar, P.S. Reddy, B. Sreedhar, Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim. Acta Part A Mol. Biomol. 102, 128–133 (2013). https://doi.org/10.1016/j.saa.2012.10.015

    Article  CAS  Google Scholar 

  55. S. Machado, S.L. Pinto, J.P. Grosso, H.P.A. Nouws, J.T. Albergaria, C. Delerue-Matos, Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci. Total. Environ. 445–446, 1–8 (2013). https://doi.org/10.1016/j.scitotenv.2012.12.033

    Article  CAS  Google Scholar 

  56. S. Saif, A. Tahir, Y. Chen, Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6, 209 (2016). https://doi.org/10.3390/nano6110209

    Article  CAS  Google Scholar 

  57. O.P. Bolade, A.B. Williams, N.U. Benson, Green synthesis of iron-based nanomaterials for environmental remediation: a review. Environ. Nanotechnol. Monitor. Manag. 13, 100279 (2020). https://doi.org/10.1016/j.enmm.2019.100279

    Article  Google Scholar 

  58. R. Hao, D. Li, J. Zhang, T. Jiao, Green synthesis of iron nanoparticles using green tea and its removal of hexavalent chromium. Nanomaterials 11, 650 (2021). https://doi.org/10.3390/nano11030650

    Article  CAS  Google Scholar 

  59. Y. Wei, Z. Fang, L. Zheng, L. Tan, E.P. Tsang, Green synthesis of Fe nanoparticles using peels aqueous extracts. Mater. Lett. 185, 384–386 (2016). https://doi.org/10.1016/j.matlet.2016.09.029

    Article  CAS  Google Scholar 

  60. Y. Cai, Y. Shen, A. Xie, S. Li, X. Wang, Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles. J. Magn. Magn. Mater. 322, 2938–2943 (2010). https://doi.org/10.1016/j.jmmm.2010.05.009

    Article  CAS  Google Scholar 

  61. G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda, R.S. Varma, Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J. Mater. Chem. 19, 8671–8677 (2009). https://doi.org/10.1039/B909148C

    Article  CAS  Google Scholar 

  62. M. Nadagouda, A. Castle, R. Murdock, S. Hussain, R. Varma, In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem. 12, 114–122 (2010). https://doi.org/10.1039/B921203P

    Article  CAS  Google Scholar 

  63. M. Chrysochoou, M. McGuire, G. Dahal, Transport characteristics of green-tea nano-scale zero valent iron as a function of soil mineralogy. Chem. Eng. Trans. 28, 121–126 (2012). https://doi.org/10.3303/CET1228021

    Article  Google Scholar 

  64. M. Chrysochoou, C.P. Johnston, G. Dahal, A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron. J. Hazard. Mater. 201–202, 33–42 (2012). https://doi.org/10.1016/j.jhazmat.2011.11.003

    Article  CAS  Google Scholar 

  65. X. Weng, L. Huang, Z. Chen, M. Megharaj, R. Naidu, Synthesis of iron-based nanoparticles by green tea extract and their degradation of malachite. Ind. Crop. Prod. 51, 342–347 (2013). https://doi.org/10.1016/j.indcrop.2013.09.024

    Article  CAS  Google Scholar 

  66. Y. Kuang, Q. Wang, Z. Chen, M. Megharaj, R. Naidu, Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. J. Colloid Interface Sci. 15, 67–73 (2013). https://doi.org/10.1016/j.jcis.2013.08.020

    Article  CAS  Google Scholar 

  67. S.C.G. Kiruba Daniel, G. Vinothini, N. Subramanian, K. Nehru, M. Sivakumar, Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J. Nanopart. Res. 15, 1319 (2013). https://doi.org/10.1007/s11051-012-1319-1

    Article  CAS  Google Scholar 

  68. Z. Wang, Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustain. Chem. Eng. 1, 1551–1554 (2013). https://doi.org/10.1021/sc400174a

    Article  CAS  Google Scholar 

  69. L. Huang, X. Weng, Z. Chen, M. Megharaj, R. Naidu, Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim. Acta Part A Mol. Biomol. 117, 801–804 (2014). https://doi.org/10.1016/j.saa.2013.09.054

    Article  CAS  Google Scholar 

  70. Z. Markova, P. Novak, J. Kaslik, P. Plachtova, M. Brazdova, D. Jancula, K.M. Siskova, L. Machala, B. Marsalek, R. Zboril, R.A. Varma, Iron(II, III)−polyphenol complex nanoparticles derived from green tea with remarkable ecotoxicological impact. CS Sustainable Chem. Eng. 2, 1674–1680 (2014). https://doi.org/10.1021/sc5001435

    Article  CAS  Google Scholar 

  71. F. Luo, Z. Chen, M. Megharaj, R. Naidu, Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles. RSC Adv. 4, 53467–53474 (2014)

    Article  CAS  Google Scholar 

  72. V.V. Makarov, S.S. Makarova, A.J. Love, O.V. Sinitsyna, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30, 5982–5988 (2014). https://doi.org/10.1021/la5011924

    Article  CAS  Google Scholar 

  73. C. Mystrioti, D. Sparis, N. Papasiopi, A. Xenidis, D. Dermatas, M. Chrysochoou, Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters. Bull. Environ. Contam. Toxicol. 94, 302–307 (2015). https://doi.org/10.1007/s00128-014-1442-z

    Article  CAS  Google Scholar 

  74. R. Herrera-Becerra, J.L. Rius, C. Zorrilla, Tannin biosynthesis of iron oxide nanoparticles. Appl. Phys. A 100, 453–459 (2010). https://doi.org/10.1007/s00339-010-5903-x

    Article  CAS  Google Scholar 

  75. G.E. Hoag, J.B. Collins, R.S. Varma, M.N. Nadagouda, Green synthesis of nanometals using plant extracts and use thereof, U.S. Patent No. 2012/0055873 A1 (2012).

  76. Z. Xiao, M. Yuan, B. Yang, Z. Liu, J. Huang, D. Sun, Plant-mediated synthesis of highly active iron nanoparticles for Cr(VI) removal: investigation of the leading biomolecules. Chemosphere 150, 357–364 (2016). https://doi.org/10.1016/j.chemosphere.2016.02.056

    Article  CAS  Google Scholar 

  77. F.E. García, A.M. Senn, J.M. Meichtry, T.B. Scott, H. Pullin, A.G. Leyva, E.B. Halac, C.P. Ramos, J. Sacanell, M. Mizrahi, F.G. Requejo, M.I. Litter, J. Environ. Manag. 235, 1–8 (2019). https://doi.org/10.1016/j.jenvman.2019.01.002

    Article  CAS  Google Scholar 

  78. Z. Lin, X. Weng, G. Owens, Z. Chen, Simultaneous removal of Pb(II) and rifampicin from wastewater by iron nanoparticles synthesized by a tea extract. J. Cleaner Prod. 242, 118476 (2020). https://doi.org/10.1016/j.jclepro.2019.118476

    Article  CAS  Google Scholar 

  79. Z. Wu, X. Su, Z. Lin, N.I. Khan, G. Owens, Z. Chen, Removal of As(V) by iron-based nanoparticles synthesized via the complexation of biomolecules in green tea extracts and an iron salt. Sci. Tot. Environ. 379, 142883 (2021). https://doi.org/10.1016/j.scitotenv.2020.142883

    Article  CAS  Google Scholar 

  80. Y. Liu, X. Jin, Z. Chen, The formation of iron nanoparticles by Eucalyptus leaf extract and used to remove Cr(VI). Sci. Tot. Environ. 627, 470–479 (2018). https://doi.org/10.1016/j.scitotenv.2018.01.241

    Article  CAS  Google Scholar 

  81. Z. Wu, X. Su, Z. Lin, G. Owens, Z. Chen, Mechanism of As(V) removal by green synthesized iron nanoparticles. J. Hazard. Mat. 764, 120811 (2019). https://doi.org/10.1016/j.jhazmat.2019.120811

    Article  CAS  Google Scholar 

  82. A.M. Ealias, J.V. Jose, M.P. Saravanakumar, Biosynthesised magnetic iron nanoparticles for sludge dewatering via Fenton process. Environ. Sci. Pollut. Res. 23, 21416–21430 (2016). https://doi.org/10.1007/s11356-016-7351-4

    Article  CAS  Google Scholar 

  83. K. Rong, J. Wang, Z. Zhang, J. Zhang, Green synthesis of iron nanoparticles using Korla fragrant pear peel extracts for the removal of aqueous Cr(VI). Ecol. Eng. 149, 105793 (2020). https://doi.org/10.1016/j.ecoleng.2020.105793

    Article  Google Scholar 

  84. Z. Pan, Y. Lin, B. Sarkar, G. Owens, Z. Chen, Green synthesis of iron nanoparticles using red peanut skin extract: synthesis mechanism, characterization and effect of conditions on chromium removal. J. Coll. Interf. Sci. 558, 106–114 (2020). https://doi.org/10.1016/j.jcis.2019.09.106

    Article  CAS  Google Scholar 

  85. B. Desalegn, M. Megharaj, Z. Chen, R. Naidu, Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS. Heliyon 5, e01750 (2019). https://doi.org/10.1016/j.heliyon.2019.e01750

    Article  Google Scholar 

  86. M. Ergüt, D. Uzunoğlu, A. Özer, Efficient decolourization of malachite green with biosynthesized iron oxide nanoparticles loaded carbonated hydroxyapatite as a reusable heterogeneous Fenton-like catalyst, J. Environ. Sci. Health, Part A, 1–15 (2019). https://doi.org/10.1080/10934529.2019.1596698

  87. H. Espinoza-Gómez, L.Z. Flores-López, K.A. Espinoza, G. Alonso-Nuñez, Microstrain analyses of Fe3O4NPs greenly synthesized using Gardenia jasminoides flower extract, during the photocatalytic removal of a commercial dye, Appl. Nanosci., 10 (2019). https://doi.org/10.1007/s13204-019-01070-w

  88. K. Sathya, R. Saravanathamizhan, G. Baskar, Ultrasound assisted phytosynthesis of iron oxide nanoparticle. Ultrason. Sonochem. 39, 446–451 (2017). https://doi.org/10.1016/j.ultsonch.2017.05.017

    Article  CAS  Google Scholar 

  89. J. Gould, The kinetics of hexavalent chromium reduction by metallic iron. Water Res. 16, 871–877 (1982). https://doi.org/10.1016/0043-1354(82)90016-1

    Article  CAS  Google Scholar 

  90. L.J. Matheson, P.G. Tratnyek, Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045–2053 (1994). https://doi.org/10.1021/es00061a012

    Article  CAS  Google Scholar 

  91. A. Agrawal, P.G. Tratnyek, Reduction of nitro aromatic compounds by zerovalent iron metal. Environ. Sci. Technol. 30, 153–160 (1995). https://doi.org/10.1021/es950211h

    Article  Google Scholar 

  92. C. Noubactep, Designing metallic iron packed-beds for water treatment: a critical review, Clean – Soil. Air, Water 43, 1–11 (2015). https://doi.org/10.1002/clen.201400304

    Article  CAS  Google Scholar 

  93. C. Noubactep, No scientific debate in the zero-valent iron literature. Clean Soil Air Water 43, 1–3 (2016). https://doi.org/10.1002/clen.201400780

    Article  CAS  Google Scholar 

  94. X. Guan, Y. Sun, H. Qin, J. Li, I.M.C. Lo, D. He, H. Dong, The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014). Water. Res. 75, 224–248 (2015). https://doi.org/10.1016/j.watres.2015.02.034

    Article  CAS  Google Scholar 

  95. M. Stan, I. Lung, M.L. Soran, C. Leostean, A. Popa, M. Stefan, M.D. Lazar, O. Opris, T.D. Silipas, A.S. Porav, Removal of antibiotics from aqueous solutions by green synthesized magnetite nanoparticles with selected agro-waste extracts. Process Saf. Environ. Prot. 107, 357–372 (2017). https://doi.org/10.1016/j.psep.2017.03.003

    Article  CAS  Google Scholar 

  96. D.K. Padhi, T.K. Panigrahi, K. Parida, S.K. Singh, P.M. Mishra, Green synthesis of Fe3O4/RGO nanocomposite with enhanced photocatalytic performance for Cr(VI) reduction, phenol degradation, and antibacterial activity. ACS Sustain. Chem. Eng. 5, 10551–10562 (2017). https://doi.org/10.1021/acssuschemeng.7b02548

    Article  CAS  Google Scholar 

  97. M. Behzadi, B. Vakili, A. Ebrahiminezhad, N. Nezafat, Iron nanoparticles as novel vaccine adjuvants. Eur. J. Pharm. Sci. 159, 105718 (2021). https://doi.org/10.1016/j.ejps.2021.105718

    Article  CAS  Google Scholar 

  98. Y.-P. Sun, X.-Q. Li, W.-X. Zhang, H.P. Wang, A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surf. A 308, 60–66 (2007). https://doi.org/10.1016/j.colsurfa.2007.05.029

    Article  CAS  Google Scholar 

  99. A.B. Cundy, L. Hopkinson, R.L.D. Whitby, Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci. Total Environ. 400, 42–51 (2008)

    Article  CAS  Google Scholar 

  100. V. Colvin, The potential environmental impact of engineered nanoparticles. Nature Biotechnol. 21, 1166–1170 (2003). https://doi.org/10.1038/nbt875

    Article  CAS  Google Scholar 

  101. B. Nowack, T.D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150, 5–22 (2007). https://doi.org/10.1016/j.envpol.2007.06.006

    Article  CAS  Google Scholar 

Download references

Funding

P-UE 2020 IIIA – Instituto de Investigación e Ingeniería Ambiental. “Efectos antropogénicos sobre los humedales de la cuenca del río Reconquista: diagnóstico ambiental integral, desarrollo de procesos de remediación y elaboración de protocolos para la gestión del territorio.”

Author information

Authors and Affiliations

Authors

Contributions

MIL conceived the original idea, designed, and wrote the review paper.

Corresponding author

Correspondence to Marta I. Litter.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litter, M.I. A short review on the preparation and use of iron nanomaterials for the treatment of pollutants in water and soil. emergent mater. 5, 391–400 (2022). https://doi.org/10.1007/s42247-022-00355-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-022-00355-1

Keywords

Navigation