Skip to main content

Advertisement

Log in

Electrospun Janus core (ethyl cellulose//polyethylene oxide) @ shell (hydroxypropyl methyl cellulose acetate succinate) hybrids for an enhanced colon-targeted prolonged drug absorbance

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Structural polymeric nanohybrids is presently a popular topic and can be conceived for numerous functional applications, including the pH-sensitive oral colon-targeted drug-delivery system. In this paper, a brand-new Janus core@shell (JCS) nanostructure was fabricated using a trifluid electrospinning, in which three polymers and a model drug 5-fluorouracil (5-FU) were elaborately and intentionally positioned. In the structural hybrids, the pH-sensitive polymer hydroxypropyl methyl cellulose acetate succinate was located in the common shell layer, and the 5-FU-loaded ethyl cellulose (EC) and polyethylene oxide (PEO) were organized in a side-by-side manner in the core sections. The JCS fiber had a fine linear morphology with a multiple-chamber structure and a shell thickness of about 24 nm. The drug presented in the fibers in an amorphous state, owing to the secondary intermolecular interactions between EC and 5-FU. The ex vivo adhesion experiments suggested that the JCS fibers could stick firmly to the intestine membranes. In vitro dissolution tests showed the JCS fibers released only 7.8% ± 3.5% of the loaded 5-FU in an acid condition. In vivo gavage administration verified that the JCS fibers effectively promoted the absorbance of 5-FU in a synergistic manner, better than the double-layer core–shell and Janus nanofibers, and near fourfold than the drug solutions as a control. The present protocol opens a new way for developing novel multifunctional nanomaterials with the JCS nanostructure as a powerful supporting platform.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data presented in the study are included, further inquiries can be directed to the corresponding author.

References

  1. Xing C, Zhu H, Dou X, Gao L, Baddi S, Zou Y, Zhao C, Peng Y, Fang Y, Feng CL (2023) Infected diabetic wound regeneration using peptide-modified chiral dressing to target revascularization. ACS Nano 17(7):6275–6291. https://doi.org/10.1021/acsnano.2c10039

    Article  CAS  Google Scholar 

  2. Zhu H, Wang Y, Qu M, Pan Y, Zheng G, Dai K, Huang M, Alhadhrami A, Ibrahim MM, El-Bahy ZM, Liu C, Shen C, Liu X (2022) Electrospun poly(vinyl alcohol)/silica film for radiative cooling. Adv Compos Hybrid Mater 5(3):1966–1975. https://doi.org/10.1007/s42114-022-00529-9

    Article  CAS  Google Scholar 

  3. Mhetre H, Kanse Y, Chendake Y (2023) Influence of electrospinning voltage on the diameter and properties of 1-dimensional zinc oxide nanofiber. ES Mater Manuf 20:838. https://doi.org/10.30919/esmm5f838

  4. Shen Y, Yu X, Cui J, Yu F, Liu M, Chen Y, Wu J, Sun B, Mo X (2022) Development of biodegradable polymeric stents for the treatment of cardiovascular diseases. Biomolecules 12(9):1245. https://doi.org/10.3390/biom12091245

    Article  CAS  Google Scholar 

  5. Jiang W, Du Y, Ji Y, Zhou Y, Zhao P, Yu D G (2022) Modernization of traditional chinese condiments via electrospun polymeric nanocomposites. ES Food Agrofor 8:47–56. https://doi.org/10.30919/esfaf738

  6. Yu DG, Zhao P (2022) The key elements for biomolecules to biomaterials and to bioapplications. Biomolecules 12(9):1234. https://doi.org/10.3390/biom12091234

    Article  CAS  Google Scholar 

  7. Song W, Zhang Y, Tran CH, Choi HK, Yu DG, Kim I (2023) Porous organic polymers with defined morphologies: synthesis, assembly, and emerging applications. Prog Polym Sci 142:101691. https://doi.org/10.1016/j.progpolymsci.2023.101691

    Article  CAS  Google Scholar 

  8. Xiao L, Xu W, Huang L, Liu J, Yang G (2023) Nanocomposite pastes of gelatin and cyclodextrin-grafted chitosan nanoparticles as potential postoperative tumor therapy. Adv Compos Hybrid Mater 6(1):15. https://doi.org/10.1007/s42114-022-00575-3

    Article  CAS  Google Scholar 

  9. Wang Z, Li R, Zhang J (2022) On-demand drug delivery of triptolide and celastrol by poly(lactic-co-glycolic acid) nanoparticle/triglycerol monostearate-18 hydrogel composite for rheumatoid arthritis treatment. Adv Compos Hybrid Mater 5(4):2921–2935. https://doi.org/10.1007/s42114-022-00493-4

    Article  CAS  Google Scholar 

  10. Wang X, Qi Y, Hu Z, Jiang L, Pan F, Xiang Z, Xiong Z, Jia W, Hu J, Lu W (2022) Fe3O4@PVP@DOX magnetic vortex hybrid nanostructures with magnetic-responsive heating and controlled drug delivery functions for precise medicine of cancers. Adv Compos Hybrid Mater 5(3):1786–1798. https://doi.org/10.1007/s42114-022-00433-2

    Article  CAS  Google Scholar 

  11. Chen R, Shi J, Liu C, Li J, Cao S (2022) In situ self-assembly of gold nanorods with thermal-responsive microgel for multi-synergistic remote drug delivery. Adv Compos Hybrid Mater 5(3):2223–2234. https://doi.org/10.1007/s42114-021-00306-0

    Article  CAS  Google Scholar 

  12. Wang H, Lu Y, Yang H, Yu DG, Lu X (2023) The influence of the ultrasonic treatment of working fluids on electrospun amorphous solid dispersions. Front Mol Biosci 10:1184767. https://doi.org/10.3389/fmolb.2023.1184767

    Article  CAS  Google Scholar 

  13. Ji Y, Zhao H, Liu H, Zhao P, Yu DG (2023) Electrosprayed stearic-acid-coated ethylcellulose microparticles for an improved sustained release of anticancer drug. Gels 9(9):700. https://doi.org/10.3390/gels9090700

    Article  CAS  Google Scholar 

  14. Yu D G, Zhou J (2023) How can electrospinning further service well for pharmaceutical researches? J Pharm Sci S0022354923003337. https://doi.org/10.1016/j.xphs.2023.08.017

  15. Wen P, Feng K, Yang H, Huang X, Zong MH, Lou WY, Li N, Wu H (2017) Electrospun core-shell structured nanofilm as a novel colon-specific delivery system for protein. Carbohydr Polym 169:157–166. https://doi.org/10.1016/j.carbpol.2017.03.082

    Article  CAS  Google Scholar 

  16. Awad A, Madla CM, McCoubrey LE, Ferraro F, Gavins FKH, Buanz A, Gaisford S, Orlu M, Siepmann F, Siepmann J, Basit AW (2022) Clinical translation of advanced colonic drug delivery technologies. Adv Drug Delivery Rev 181:114076. https://doi.org/10.1016/j.addr.2021.114076

    Article  CAS  Google Scholar 

  17. Cui M, Zhang M, Liu K (2021) Colon-targeted drug delivery of polysaccharide-based nanocarriers for synergistic treatment of inflammatory bowel disease: a review. Carbohydr Polym 272:118530. https://doi.org/10.1016/j.carbpol.2021.118530

    Article  CAS  Google Scholar 

  18. Zhang Z, Wells CJR, King AM, Bear JC, Davies GL, Williams GR (2020) pH-responsive nanocomposite fibres allowing MRI monitoring of drug release. J Mater Chem B 8(32):7264–7274. https://doi.org/10.1039/D0TB01033B

    Article  CAS  Google Scholar 

  19. Cai X, Wang X, He M, Wang Y, Lan M, Zhao Y, Gao F (2021) Colon-targeted delivery of tacrolimus using pH-responsive polymeric nanoparticles for murine colitis therapy. Int J Pharm 606:120836. https://doi.org/10.1016/j.ijpharm.2021.120836

    Article  CAS  Google Scholar 

  20. Situ W, Li X, Liu J, Chen L (2015) Preparation and characterization of glycoprotein-resistant starch complex as a coating material for oral bioadhesive microparticles for colon-targeted polypeptide delivery. J Agric Food Chem 63(16):4138–4147. https://doi.org/10.1021/acs.jafc.5b00393

    Article  CAS  Google Scholar 

  21. Zhao P, Xia X, Xu X, Leung KKC, Rai A, Deng Y, Yang B, Lai H, Peng X, Shi P, Zhang H, Chiu PWY, Bian L (2021) Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat Commun 12(1):7162. https://doi.org/10.1038/s41467-021-27463-6

    Article  CAS  Google Scholar 

  22. Xu YJ, Wei K, Zhao P, Feng Q, Choi CKK, Bian L (2016) Preserving the adhesion of catechol-conjugated hydrogels by thiourea–quinone coupling. Biomater Sci 4(12):1726–1730. https://doi.org/10.1039/C6BM00434B

    Article  CAS  Google Scholar 

  23. Akl MA, Kartal-Hodzic A, Suutari T, Oksanen T, Montagner IM, Rosato A, Ismael HR, Afouna MI, Caliceti P, Yliperttula M, Samy AM, Mastrotto F, Salmaso S, Viitala T (2019) Real-time label-free targeting assessment and in vitro characterization of curcumin-loaded poly-lactic-co-glycolic acid nanoparticles for oral colon targeting. ACS Omega 4(16):16878–16890. https://doi.org/10.1021/acsomega.9b02086

    Article  CAS  Google Scholar 

  24. Maroni A, Zema L, Del Curto MD, Foppoli A, Gazzaniga A (2012) Oral colon delivery of insulin with the aid of functional adjuvants. Adv Drug Delivery Rev 64(6):540–556. https://doi.org/10.1016/j.addr.2011.10.006

    Article  CAS  Google Scholar 

  25. Varum FJO, Veiga F, Sousa JS, Basit AW (2011) Mucoadhesive platforms for targeted delivery to the colon. Int J Pharm 420(1):11–19. https://doi.org/10.1016/j.ijpharm.2011.08.006

    Article  CAS  Google Scholar 

  26. Lin WC, Pan WY, Liu CK, Huang WX, Song HL, Chang KS, Li MJ, Sung HW (2018) In situ self-spray coating system that can uniformly disperse a poorly water-soluble H2S donor on the colorectal surface to treat inflammatory bowel diseases. Biomaterials 182:289–298. https://doi.org/10.1016/j.biomaterials.2018.07.044

    Article  CAS  Google Scholar 

  27. Qi J, Hu M, Li H, Jing R, Shen G (2018) A novel method of synthesis of fluorescent carbon dots for supersensitive and selective detection of cancer markers. J Nanosci Nanotechnol 18(12):8085–8093. https://doi.org/10.1166/jnn.2018.16403

    Article  CAS  Google Scholar 

  28. Bie P, Chen L, Li X, Li L (2016) Characterization of concanavalin a-conjugated resistant starch acetate bioadhesive film for oral colon-targeting microcapsule delivery system. Ind Crops Prod 84:320–329. https://doi.org/10.1016/j.indcrop.2016.02.023

    Article  CAS  Google Scholar 

  29. Ziyadi H, Baghali M, Bagherianfar M, Mehrali F, Faridi-Majidi R (2021) An investigation of factors affecting the electrospinning of poly (vinyl alcohol)/kefiran composite nanofibers. Adv Compos Hybrid Mater 4(3):768–779. https://doi.org/10.1007/s42114-021-00230-3

    Article  CAS  Google Scholar 

  30. Li Z, Xie W, Yao F, Du A, Wang Q, Guo Z, Gu H (2022) Comprehensive electrocatalytic degradation of tetracycline in wastewater by electrospun perovskite manganite nanoparticles supported on carbon nanofibers. Adv Compos Hybrid Mater 5(3):2092–2105. https://doi.org/10.1007/s42114-022-00550-y

    Article  CAS  Google Scholar 

  31. Long Z, Yuan L, Shi C, Wu C, Qiao H, Wang K (2022) Porous Fe2O3 nanorod-decorated hollow carbon nanofibers for high-rate lithium storage. Adv Compos Hybrid Mater 5(1):370–382. https://doi.org/10.1007/s42114-021-00397-9

    Article  CAS  Google Scholar 

  32. Zhang Z, Zhao Y, Li Z, Zhang L, Liu Z, Long Z, Li Y, Liu Y, Fan R, Sun K, Zhang Z (2022) Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv Compos Hybrid Mater 5(1):513–524. https://doi.org/10.1007/s42114-021-00350-w

    Article  CAS  Google Scholar 

  33. Liu S, Du H, Liu K, Ma MG, Kwon YE, Si C, Ji XX, Choi SE, Zhang X (2021) Flexible and porous Co3O4-carbon nanofibers as binder-free electrodes for supercapacitors. Adv Compos Hybrid Mater 4(4):1367–1383. https://doi.org/10.1007/s42114-021-00344-8

    Article  CAS  Google Scholar 

  34. Yang S, Shi C, Qu K, Sun Z, Li H, Xu B, Huang Z, Guo Z (2023) Electrostatic self-assembly cellulose nanofibers/MXene/nickel chains for highly stable and efficient seawater evaporation and purification. Carbon Lett. https://doi.org/10.1007/s42823-023-00540-0

    Article  Google Scholar 

  35. Zhou J, Wang P, Yu DG, Zhu Y (2023) Biphasic drug release from electrospun structures. Expert Opin Drug Delivery 20(5):621–640. https://doi.org/10.1080/17425247.2023.2210834

    Article  CAS  Google Scholar 

  36. Wang Y, Yu DG, Liu Y, Liu YN (2022) Progress of electrospun nanofibrous carriers for modifications to drug release profiles. J Func Biomater 13(4):289. https://doi.org/10.3390/jfb13040289

    Article  CAS  Google Scholar 

  37. Wang Q, Zeng J, Li J, Yu S, Innocent MT, Li M, Ma W, Xiang H, Zhu M (2023) Multifunctional fiber derived from wet spinning combined with UV photopolymerization for human motion and temperature detection. Adv Compos Hybrid Mater 6(1):26. https://doi.org/10.1007/s42114-022-00583-3

    Article  CAS  Google Scholar 

  38. Han W, Wang L, Li Q, Ma B, He C, Guo X, Nie J, Ma G (2022) A review: current status and emerging developments on natural polymer-based electrospun fibers. Macromol Rapid Commun 43(21):2200456. https://doi.org/10.1002/marc.202200456

    Article  CAS  Google Scholar 

  39. Kose MD, Ungun N, Bayraktar O (2022) Eggshell membrane based turmeric extract loaded orally disintegrating films. Curr Drug Deliv 19(5):547–559. https://doi.org/10.2174/1567201818666210708123449

    Article  CAS  Google Scholar 

  40. Ejeta F, Gabriel T, Joseph NM, Belete A (2022) Formulation, optimization and in vitro evaluation of fast disintegrating tablets of salbutamol sulphate using a combination of superdisintegrant and subliming agent. Curr Drug Deliv 19(1):129–141. https://doi.org/10.2174/1567201818666210614094646

    Article  CAS  Google Scholar 

  41. He H, Wu M, Zhu J, Yang Y, Ge R, Yu DG (2022) Engineered spindles of little molecules around electrospun nanofibers for biphasic drug release. Adv Fiber Mater 4(2):305–317. https://doi.org/10.1007/s42765-021-00112-9

    Article  CAS  Google Scholar 

  42. Tabakoglu S, Kolbuk D, Sajkiewicz P (2022) Multifluid electrospinning for multi-drug delivery systems: pros and cons, challenges, and future directions. Biomater Sci 11(1):37–61. https://doi.org/10.1039/d2bm01513g

    Article  CAS  Google Scholar 

  43. Yang Y, Chen W, Wang M, Shen J, Tang Z, Qin Y, Yu DG (2023) Engineered shellac beads-on-the-string fibers using triaxial electrospinning for improved colon-targeted drug delivery. Polymers 15(10):2237. https://doi.org/10.3390/polym15102237

    Article  CAS  Google Scholar 

  44. Huang H, Song Y, Zhang Y, Li Y, Li J, Lu X, Wang C (2022) Electrospun nanofibers: current progress and applications in food systems. J Agric Food Chem 70(5):1391–1409. https://doi.org/10.1021/acs.jafc.1c05352

    Article  CAS  Google Scholar 

  45. Yu DG, Huang C (2023) Electrospun biomolecule-based drug delivery systems Biomolecules 13(7):1152. https://doi.org/10.3390/biom13071152

    Article  CAS  Google Scholar 

  46. Du Y, Yang Z, Kang S, Yu DG, Chen X, Shao J (2023) A sequential electrospinning of a coaxial and blending process for creating double-layer hybrid films to sense glucose. Sensors 23(7):3685. https://doi.org/10.3390/s23073685

    Article  CAS  Google Scholar 

  47. Huang X, Jiang W, Zhou J, Yu DG, Liu H (2022) The applications of ferulic-acid-loaded fibrous films for fruit preservation. Polymers 14(22):4947. https://doi.org/10.3390/polym14224947

    Article  CAS  Google Scholar 

  48. Wang ML, Yu DG, Bligh SWA (2023) Progress in preparing electrospun janus fibers and their applications. Appl Mater Today 31:101766. https://doi.org/10.1016/j.apmt.2023.101766

    Article  Google Scholar 

  49. Guler E, Hazar-Yavuz AN, Tatar E, Haidari MM, Ozcan GS, Duruksu G, Graca MPF, Kalaskar DM, Gunduz O, Cam ME (2023) Oral empagliflozin-loaded tri-layer core-sheath fibers fabricated using tri-axial electrospinning: enhanced in vitro and in vivo antidiabetic performance. Int J Pharm 635:122716. https://doi.org/10.1016/j.ijpharm.2023.122716

    Article  CAS  Google Scholar 

  50. Liu H, Wang H, Lu X, Murugadoss V, Huang M, Yang H, Wan F, Yu DG, Guo Z (2022) Electrospun structural nanohybrids combining three composites for fast helicide delivery. Adv Compos Hybrid Mater 5(2):1017–1029. https://doi.org/10.1007/s42114-022-00478-3

    Article  CAS  Google Scholar 

  51. Song W, Tang Y, Qian C, Kim BJ, Liao Y, Yu DG (2023) Electrospinning spinneret: a bridge between the visible world and the invisible nanostructures. Innovation 4(2):100381. https://doi.org/10.1016/j.xinn.2023.100381

    Article  CAS  Google Scholar 

  52. Wen X, Deng Z, Xu Y, Yan G, Deng X, Wu L, Liang Q, Fang F, Feng X, Yu M, He J (2021) Preparation and in vitro/in vivo evaluation of orally disintegrating/modified-release praziquantel tablets. Pharmaceutics 13(10):1567. https://doi.org/10.3390/pharmaceutics13101567

    Article  CAS  Google Scholar 

  53. Mudie D, Stewart A, Rosales J, Adam M, Morgen M, Vodak D (2021) In vitro-in silico tools for streamlined development of acalabrutinib amorphous solid dispersion tablets. Pharmaceutics 13(8):1257. https://doi.org/10.3390/pharmaceutics13081257

    Article  CAS  Google Scholar 

  54. Jede C, Wagner C, Kubas H, Weigandt M, Weber C, Lecomte M, Badolo L, Koziolek M, Weitschies W (2019) Improved prediction of in vivo supersaturation and precipitation of poorly soluble weakly basic drugs using a biorelevant bicarbonate buffer in a gastrointestinal transfer model. Mol Pharmaceutics 16(9):3938–3947. https://doi.org/10.1021/acs.molpharmaceut.9b00534

    Article  CAS  Google Scholar 

  55. Jermain SV, Lowinger MB, Ellenberger DJ, Miller DA, Su Y, Williams RO (2020) In vitro and in vivo behaviors of KinetiSol and spray-dried amorphous solid dispersions of a weakly basic drug and ionic polymer. Mol Pharmaceutics 17(8):2789–2808. https://doi.org/10.1021/acs.molpharmaceut.0c00108

    Article  CAS  Google Scholar 

  56. Zema L, Loreti G, Melocchi A, Maroni A, Palugan L, Gazzaniga A (2013) Gastroresistant capsular device prepared by injection molding. Int J Pharm 440(2):264–272. https://doi.org/10.1016/j.ijpharm.2012.05.071

    Article  CAS  Google Scholar 

  57. Darbasizadeh B, Mortazavi SA, Kobarfard F, Jaafari MR, Hashemi A, Farhadnejad H, Feyzi-Barnaji B (2021) Electrospun doxorubicin-loaded PEO/PCL core/sheath nanofibers for chemopreventive action against breast cancer cells. J Drug Delivery Sci Technol 64:102576. https://doi.org/10.1016/j.jddst.2021.102576

    Article  CAS  Google Scholar 

  58. Kaseem M, Choe HC (2021) Acceleration of bone formation and adhesion ability on dental implant surface via plasma electrolytic oxidation in a solution containing bone ions. Metals 11(1):106. https://doi.org/10.3390/met11010106

    Article  CAS  Google Scholar 

  59. Li G, Chen Y, Hu J, Wu X, Hu J, He X, Li J, Zhao Z, Chen Z, Li Y, Hu H, Li Y, Lan P (2013) A 5-fluorouracil-loaded polydioxanone weft-knitted stent for the treatment of colorectal cancer. Biomaterials 34(37):9451–9461. https://doi.org/10.1016/j.biomaterials.2013.08.055

    Article  CAS  Google Scholar 

  60. Parodi B, Russo E, Gatti P, Cafaggi S, Bignardi G (1999) Development and in vitro evaluation of buccoadhesive tablets using a new model substrate for bioadhesion measures: the eggshell membrane. Drug Dev Ind Pharm 25(3):289–295. https://doi.org/10.1081/DDC-100102173

    Article  CAS  Google Scholar 

  61. Wang M, Ge RL, Zhang F, Yu DG, Liu ZP, Li X, Shen H, Williams GR (2023) Electrospun fibers with blank surface and inner drug gradient for improving sustained release. Biomaterials Adv 150:213404. https://doi.org/10.1016/j.bioadv.2023.213404

    Article  CAS  Google Scholar 

  62. Liu C, Liu S-l, Bian J-f, Geng Z, Lu Y, Hu H-y (2001) A simple and rapid HPLC determination of 5-Fluorouracil in human serum. Chinese J Pharm Anal 21(2):96–98. https://doi.org/10.16155/j.0254-1793.2001.02.008

    Article  Google Scholar 

  63. Yao L, Sun C, Lin H, Li G, Lian Z, Song R, Zhuang S, Zhang D (2023) Electrospun bi-decorated BixTiyOz/TiO2 flexible carbon nanofibers and their applications on degradating of organic pollutants under solar radiation. J Mater Sci Technol 150:114–123. https://doi.org/10.1016/j.jmst.2022.07.066

    Article  CAS  Google Scholar 

  64. Cao X, Chen W, Zhao P, Yang Y, Yu DG (2022) Electrospun porous nanofibers: pore-forming mechanisms and applications for photocatalytic degradation of organic pollutants in wastewater. Polymers 14(19):3990. https://doi.org/10.3390/polym14193990

    Article  CAS  Google Scholar 

  65. Bai Y, Liu Y, Lv H, Shi H, Zhou W, Liu Y, Yu DG (2022) Processes of electrospun polyvinylidene fluoride-based nanofibers, their piezoelectric properties, and several fantastic applications. Polymers 14(20):4311. https://doi.org/10.3390/polym14204311

    Article  CAS  Google Scholar 

  66. Zhou J, Wang L, Gong W, Wang B, Yu DG, Zhu Y (2023) Integrating chinese herbs and western medicine for new wound dressings through handheld electrospinning. Biomedicines 11(8):2146. https://doi.org/10.3390/biomedicines11082146

    Article  CAS  Google Scholar 

  67. Qian C, Liu Y, Chen S, Zhang C, Chen X, Liu Y, Liu P (2023) Electrospun core–sheath PCL nanofibers loaded with nHA and simvastatin and their potential bone regeneration applications. Front Bioeng Biotechnol 11:1205252. https://doi.org/10.3389/fbioe.2023.1205252

    Article  Google Scholar 

  68. Zhou J, Dai Y, Fu J, Yan C, Yu DG, Yi T (2023) Dual-step controlled release of berberine hydrochloride from the trans-scale hybrids of nanofibers and microparticles. Biomolecules 13(6):1011. https://doi.org/10.3390/biom13061011

    Article  CAS  Google Scholar 

  69. Xu L, He H, Du Y, Zhang S, Yu DG, Liu P (2023) Electrosprayed core (cellulose acetate)–shell (polyvinylpyrrolidone) nanoparticles for smart acetaminophen delivery. Pharmaceutics 15(9):2314. https://doi.org/10.3390/pharmaceutics15092314

    Article  CAS  Google Scholar 

  70. Yu DG, Xu L (2023) Impact evaluations of articles in current drug delivery based on web of science. Curr Drug Deliv 21(3):360–367. https://doi.org/10.2174/1567201820666230508115356

    Article  CAS  Google Scholar 

  71. Lv H, Liu Y, Bai Y, Shi H, Zhou W, Chen Y, Liu Y, Yu DG (2023) Recent combinations of electrospinning with photocatalytic technology for treating polluted water. Catalysts 13(4):758. https://doi.org/10.3390/catal13040758

    Article  CAS  Google Scholar 

  72. Arun A, Malrautu P, Laha A, Ramakrishna S (2021) Gelatin nanofibers in drug delivery systems and tissue engineering. Eng Sci 16(0):71–81. https://doi.org/10.30919/es8d527

  73. Bhardwaj A K, Pandit A K, Rehalia A, Singh V, Sharma R (2023) A review on nanomaterials for drug delivery systems and application of carbon based nanomaterials. ES Mater Manuf 21:824. https://doi.org/10.30919/esmm5f824

  74. Song N, Ren S, Zhang Y, Wang C, Lu X (2022) Confinement of prussian blue analogs boxes inside conducting polymer nanotubes enables significantly enhanced catalytic performance for water treatment. Adv Funct Mater 32(34):2204751. https://doi.org/10.1002/adfm.202204751

    Article  CAS  Google Scholar 

  75. Chen X, Yan S, Wen S, Chen J, Xu J, Wang C, Lu X (2023) Chelating adsorption-engaged synthesis of ultrafine iridium nanoparticles anchored on N-doped carbon nanofibers toward highly efficient hydrogen evolution in both alkaline and acidic media. J Colloid Interface Sci 641:782–790. https://doi.org/10.1016/j.jcis.2023.03.097

    Article  CAS  Google Scholar 

  76. Kang S, Hou S, Chen X, Yu DG, Wang L, Li X, Williams RG (2020) Energy-saving electrospinning with a concentric teflon-core rod spinneret to create medicated nanofibers. Polymers 12(10):2421. https://doi.org/10.3390/polym12102421

    Article  CAS  Google Scholar 

  77. Jiang W, Zhang X, Liu P, Zhang Y, Song W, Yu DG, Lu X (2022) Electrospun healthcare nanofibers from medicinal liquor of phellinus igniarius. Adv Compos Hybrid Mater 5(4):3045–3056. https://doi.org/10.1007/s42114-022-00551-x

    Article  CAS  Google Scholar 

  78. Wang M, Hou J, Yu DG, Li S, Zhu J, Chen Z (2020) Electrospun tri-layer nanodepots for sustained release of acyclovir. J Alloy Compd 846:156471. https://doi.org/10.1016/j.jallcom.2020.156471

    Article  CAS  Google Scholar 

  79. Liu H, Dai Y, Li J, Liu P, Zhou W, Yu DG, Ge R (2023) Fast and convenient delivery of fluidextracts liquorice through electrospun core-shell nanohybrids. Front Bioeng Biotechnol 11:1172133. https://doi.org/10.3389/fbioe.2023.1172133

    Article  Google Scholar 

  80. Peppas NA (1985) Analysis of fickian and non-fickian drug release from polymers. Pharm Acta Helv 60(4):110–111. PMID:4011621

    CAS  Google Scholar 

  81. Bahaar H, Reddy SG, Kumar BS et al (2023) Modified layered double hydroxide – PEG magneto-sensitive hydrogels with suitable ligno-alginate green polymer composite for prolonged drug delivery applications. Eng Sci 24:914. https://doi.org/10.30919/es914

  82. Meng X, Li Y, AlMasoud N, Wang W, Alomar TS, Li J, Ye X, Algadi H, Seok I, Li H, Xu BB, Lu N, El-Bahy ZM, Guo Z (2023) Compatibilizing and toughening blends of recycled acrylonitrile-butadiene-styrene/recycled high impact polystyrene blends via styrene-butadiene-glycidyl methacrylate terpolymer. Polymer 272:125856. https://doi.org/10.1016/j.polymer.2023.125856

    Article  CAS  Google Scholar 

  83. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohyd Polym 309:120678. https://doi.org/10.1016/j.carbpol.2023.120678

    Article  CAS  Google Scholar 

  84. Gao F, Liu Y, Jiao C, El‐Bahy SM, Shao Q, El‐Bahy ZM, Li H, Wasnik P, Algadi H, Xu BB, Wang N, Yuan Y, Guo Z (2023) Fluorine-phosphate copolymerization waterborne acrylic resin coating with enhanced anticorrosive performance. J Polym Sci Pol 20230108. https://doi.org/10.1002/pol.20230108

  85. Dong N, Liu Z, He H, Lu Y, Qi J, Wu W (2023) “Hook&Loop” multivalent interactions based on disk-shaped nanoparticles strengthen active targeting. J Controlled Release 354:279–293. https://doi.org/10.1016/j.jconrel.2023.01.022

    Article  CAS  Google Scholar 

  86. Zhang T, Li L, Chunta S, Wu W, Chen Z, Lu Y (2023) Enhanced oral bioavailability from food protein nanoparticles: a mini review. J Controlled Release 354:146–154. https://doi.org/10.1016/j.jconrel.2022.12.043

    Article  CAS  Google Scholar 

  87. Man F, Yang Y, He H, Qi J, Wu W, Lu Y (2023) Establishment of in vitro dissolution based on similarity with in vivo dissolution: a case study on aripiprazole. Mol Pharmaceutics 20(5):2579–2588. https://doi.org/10.1021/acs.molpharmaceut.3c00014

    Article  CAS  Google Scholar 

  88. Wang X, Feng C (2023) Chiral fiber supramolecular hydrogels for tissue engineering. Wiley Wires Nanomed Nanobi 15(2):e1847. https://doi.org/10.1002/wnan.1847

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mr. Yingfu Bai’s precious help on the investigations are highly appreciated.

Funding

Shanghai Natural Science Foundation (nos. 21ZR1459500 and 20ZR1439000), the Municipal Commission of Health and Family Planning Foundation of Shanghai (no. 202140413), the Medical Health Science and Technology Innovation Plan of Jinan (nos. 202019202 and 202134037), the Science and technology innovation project of Medical staff in Shandong Province, the Natural Science Foundation of Shandong Province (nos. ZR2020QH264 and ZR2021MH129), the Science and Technology Development Fund of Macao Special Administrative Region (0061/2023/RIA1), and the Macao Polytechnic University Research Fund (RP/FCSD-01/2023).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Jianfeng Zhou, Tao Yi, Zhiyuan Zhang and Liangzhe Wang. The first draft of the manuscript was written by Jianfeng Zhou and Tao Yi, and all authors commented on the previous versions of the manuscript. Jianfeng Zhou, Tao Yi, and Zhiyuan Zhang contributed to the data curation and the preparation of figures. Tao Yi, Deng-Guang Yu, and Ping Liu acquired the funding. Ping Liu, Liangzhe Wang, and Yuanjie Zhu edited and proofread the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Deng-Guang Yu, Ping Liu or Yuanjie Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 870 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Yi, T., Zhang, Z. et al. Electrospun Janus core (ethyl cellulose//polyethylene oxide) @ shell (hydroxypropyl methyl cellulose acetate succinate) hybrids for an enhanced colon-targeted prolonged drug absorbance. Adv Compos Hybrid Mater 6, 189 (2023). https://doi.org/10.1007/s42114-023-00766-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00766-6

Keywords

Navigation