Skip to main content

Advertisement

Log in

Fe3O4@PVP@DOX magnetic vortex hybrid nanostructures with magnetic-responsive heating and controlled drug delivery functions for precise medicine of cancers

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Precise magnetic hyperthermia/chemo synergistic therapy has attracted great attention as a promising cancer therapy. However, how to improve the hyperthermia efficiency and precisely control the drug release in vivo are still challenging issues associated with the clinical precision medicine of cancers. To solve these problems, magnetic vortex Fe3O4@PVP@DOX nanostructures with magneto-triggered on-demand hyperthermia, magnetic responsive controllable drug delivery functions, and MRI T2-weighted signal enhancement were successfully developed for the hyperthermia and chemotherapy synergetic theranostic of cancers. This strategy utilizes the advantage of magnetic field stimulus which can be on-demand applied to any organ without taking account of the depth. In vitro experiments reveal the excellent on-demand heating efficiency, magnetic-responsive drug release, high MRI T2 signals and low cytotoxicity. More importantly, the results of in vivo animal experiments show that the magnetic vortex nanoplatform can effectively perform magnetic response on-demand heat therapy, and DOX drug release in the presence of a magnetic field, leading to an efficient synergistic effect in inhibiting tumor growth without any side effect. Therefore, these magnetic-responsive magnetic vortex nanostructures provide us a new strategy for the development of next-generation stimuli-responsive multifunctional theranostic platform for the clinical precision medicine of cancers.

Graphical abstract

The multifunctional nanoplatform with an excellent heating efficiency was successfully developed for synergetic theranostic with enhanced MRI contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao F, Zhang T, Liu X, Ghosal A, Zhao L (2019) Non-magnetic hypertonic saline based implant for breast cancer postsurgical recurrence prevention by magnetic field/pH-driven thermochemotherapy. Acs Appl Mater Interfaces 11:10597–10607

    Article  CAS  Google Scholar 

  2. Fan W, Yung B, Huang P, Chen X (2017) Nanotechnology for multimodal synergistic cancer therapy. Chem Rev 117:13566–13638

    Article  CAS  Google Scholar 

  3. Ghosh SG, Pramanik S, N. (2020) Bio-evaluation of doxorubicin (DOX)-incorporated hydroxyapatite (HAp)-chitosan (CS) nanocomposite triggered on osteosarcoma cells. Adv Compos Hybrid Ma 3:303–314

    Article  CAS  Google Scholar 

  4. Jia W, Qi Y, Hu Z, Xiong Z, Luo Z, Xiang Z, Hu J, Lu W (2021) Facile fabrication of monodisperse CoFe2O4 nanocrystals@dopamine@DOX hybrids for magnetic-responsive on-demand cancer theranostic applications. Adv Compos Hybrid Ma 4:989–1001

    Article  CAS  Google Scholar 

  5. Liu X, Zheng J, Sun W, Zhao X, Li Y, Gong N, Wang Y, Ma X, Zhang T, Zhao L-Y (2019) Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis. ACS Nano 13:8811–8825

    Article  CAS  Google Scholar 

  6. Zhou P, Zhao H, Wang Q, Zhou Z, Wang J, Deng G, Wang X, Liu Q, Yang H, Yang S (2018) Photoacoustic-enabled self-guidance in magnetic-hyperthermia Fe@Fe3 O4 nanoparticles for theranostics in vivo. Adv Healthc Mater 7:e1701201

  7. Hijnen N, Kneepkens E, de Smet M, Langereis S, Heijman E, Grull H (2017) Thermal combination therapies for local drug delivery by magnetic resonance-guided high-intensity focused ultrasound. Proc Natl Acad Sci U S A 114:E4802–E4811

    Article  CAS  Google Scholar 

  8. lian Y, Wang L, Cao J, Liu T, Xu Z, Yang B, Huang T, Jiang X, Wu N, (2021) Recent advances on the magnetic nanoparticle–based nanocomposites for magnetic induction hyperthermia of tumor: a short review. Adv Compos Hybrid Ma 4:925–937

    Article  Google Scholar 

  9. Hu Q, Zhou J, Qiu B, Wang Q, Song G, Guo Z (2021) Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite. Adv Compos Hybrid Ma 4:265–273

    Article  Google Scholar 

  10. Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Ma 4:865–884

    Article  CAS  Google Scholar 

  11. Noh SH, Moon SH, Shin TH, Lim Y, Cheon J (2017) Recent advances of magneto-thermal capabilities of nanoparticles: From design principles to biomedical applications. Nano Today 13:61–76

    Article  CAS  Google Scholar 

  12. Hayashi K, Nakamura M, Miki H, Ozaki S, Abe M, Matsumoto T, Sakamoto W, Yogo T, Ishimura K (2014) Magnetically responsive smart nanoparticles for cancer treatment with a combination of magnetic hyperthermia and remote-control drug release. Theranostics 4:834–844

    Article  Google Scholar 

  13. Oh Y, Lee N, Kang HW, Oh J (2016) In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe(2)O(4). Nanotechnology 27:115101

  14. Pereira C, Pereira AM, Fernandes C, Rocha M, Mendes R, Fernández-García MP, Guedes A, Tavares PB, Grenèche J-M, Araújo JP, Freire C (2012) Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504

    Article  CAS  Google Scholar 

  15. Tong S, Quinto CA, Zhang L, Mohindra P, Bao G (2017) Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano 11:6808–6816

    Article  CAS  Google Scholar 

  16. Lee JH, Jang JT, Choi JS, Moon SH, Noh SH, Kim JW, Kim JG, Kim IS, Park KI, Cheon J (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422

    Article  CAS  Google Scholar 

  17. Johannsen M, Gneveckow U, Thiesen B, Taymoorian K, Cho CH, Waldofner N, Scholz R, Jordan A, Loening SA, Wust P (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1661

    Article  Google Scholar 

  18. Guo Y, Zhang Y, Ma J, Li Q, Li Y, Zhou X, Zhao D, Song H, Chen Q, Zhu X (2018) Light/magnetic hyperthermia triggered drug released from multi-functional thermo-sensitive magnetoliposomes for precise cancer synergetic theranostics. J Control Release 272:145–158

    Article  CAS  Google Scholar 

  19. Xu C, Feng Q, Yang H, Wang G, Huang L, Bai Q, Zhang C, Wang Y, Chen Y, Cheng Q, Chen M, Han Y, Yu Z, Lesniak MS, Cheng Y (2018) A Light-triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo-photothermal therapy of triple negative breast cancer. Adv Sci 5:1800382

    Article  Google Scholar 

  20. Xiang Z, Shi Y, Zhu X, Cai L, Lu W (2021) Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, emi shielding, and photothermal conversion. Nanomicro Lett 13:150

    Article  CAS  Google Scholar 

  21. Zhang Y, Ruan K, Gu J (2021) Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17:e2101951

  22. Park J, Aryal M, Vykhodtseva N, Zhang YZ, McDannold N (2017) Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound-induced blood-tumor barrier disruption. J Control Release 250:77–85

    Article  CAS  Google Scholar 

  23. Xiang Z, Wang X, Zhang X, Shi Y, Cai L, Zhu X, Dong Y, Lu W (2022) Self-assembly of nano/microstructured 2D Ti3CNTx MXene-based composites for electromagnetic pollution elimination and Joule energy conversion application. Carbon 189:305–318

    Article  CAS  Google Scholar 

  24. Xiang Z, Huang C, Song Y, Deng B, Zhang X, Zhu X, Batalu D, Tutunaru O, Lu W (2020) Rational construction of hierarchical accordion-like Ni@porous carbon nanocomposites derived from metal-organic frameworks with enhanced microwave absorption. Carbon 167:364–377

    Article  CAS  Google Scholar 

  25. Zhang TT, Xu CH, Zhao W, Gu Y, Li XL, Xu JJ, Chen HY (2018) A redox-activated theranostic nanoagent: toward multi-mode imaging guided chemo-photothermal therapy. Chem Sci 9:6749–6757

    Article  CAS  Google Scholar 

  26. Bae Y, Fukushima S, Harada A, Kataoka K (2003) Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed Engl 42:4640–4643

    Article  CAS  Google Scholar 

  27. Wang H, Di J, Sun YB, Fu JP, Wei ZY, Matsui H, Alonso AD, Zhou SQ (2015) Biocompatible PEG-Chitosan@Carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv Func Mater 25:5537–5547

    Article  CAS  Google Scholar 

  28. Xu X, Wu J, Liu Y, Yu M, Zhao L, Zhu X, Bhasin S, Li Q, Ha E, Shi J, Farokhzad OC (2016) Ultra-pH-responsive and tumor-penetrating nanoplatform for targeted siRNA delivery with robust anti-cancer efficacy. Angew Chem Int Ed Engl 55:7091–7094

    Article  CAS  Google Scholar 

  29. Huang P, Gao Y, Lin J, Hu H, Liao H-S, Yan X, Tang Y, Jin A, Song J, Niu G, Zhang G, Horkay F, Chen X (2015) Tumor-specific formation of enzyme-instructed supramolecular self-assemblies as cancer theranostics. ACS Nano 9:9517–9527

    Article  CAS  Google Scholar 

  30. Tanaka A, Fukuoka Y, Morimoto Y, Honjo T, Koda D, Goto M, Maruyama T (2015) Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J Am Chem Soc 137:770–775

    Article  CAS  Google Scholar 

  31. Zhang H, Fei J, Yan X, Wang A, Li J (2015) Enzyme-responsive release of doxorubicin from monodisperse dipeptide-based nanocarriers for highly efficient cancer treatment in vitro. Adv Func Mater 25:1193–1204

    Article  CAS  Google Scholar 

  32. Yun CK, Hwang JW, Kwak TJ, Chang WJ, Ha S, Han K, Lee S, Choi YS (2019) Nanoinjection system for precise direct delivery of biomolecules into single cells. Lab Chip 19:580–588

    Article  CAS  Google Scholar 

  33. Dong Y, Zhu X, Pan F, Deng B, Liu Z, Zhang X, Huang C, Xiang Z, Lu W (2021) Mace-like carbon fiber/ZnO nanorod composite derived from Typha orientalis for lightweight and high-efficient electromagnetic wave absorber. Adv Compos Hybrid Ma 4:1002–1014

    Article  CAS  Google Scholar 

  34. Lee JH, Chen KJ, Noh SH, Garcia MA, Wang H, Lin WY, Jeong H, Kong BJ, Stout DB, Cheon J, Tseng HR (2013) On-demand drug release system for in vivo cancer treatment through self-assembled magnetic nanoparticles. Angew Chem Int Ed Engl 52:4384–4388

    Article  CAS  Google Scholar 

  35. Chen W, Cheng CA, Zink JI (2019) Spatial, temporal, and dose control of drug delivery using noninvasive magnetic stimulation. ACS Nano 13:1292–1308

    CAS  Google Scholar 

  36. Li M, Deng L, Li J, Yuan W, Gao X, Ni J, Jiang H, Zeng J, Ren J, Wang P (2018) Actively targeted magnetothermally responsive nanocarriers/doxorubicin for thermochemotherapy of hepatoma. ACS Appl Mater Interfaces 10:41107–41117

    Article  CAS  Google Scholar 

  37. Guo Y, Qiu H, Ruan K, Zhang Y, Gu J (2021) Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nanomicro Lett 14:26

    Google Scholar 

  38. Gao Q, Pan Y, Zheng G, Liu C, Shen C, Liu X (2021) Flexible multilayered MXene/thermoplastic polyurethane films with excellent electromagnetic interference shielding, thermal conductivity, and management performances. Adv Compos Hybrid Ma 4:274–285

    Article  CAS  Google Scholar 

  39. Chen L, Lan C, Xu B, Bi K (2021) Progress on material characterization methods under big data environment. Adv Compos Hybrid Ma 4:235–247

    Article  Google Scholar 

  40. Moradi O, Madanpisheh MA, Moghaddas M (2021) Synthesis of GO/HEMA, GO/HEMA/TiO2, and GO/Fe3O4/HEMA as novel nanocomposites and their dye removal ability. Adv Compos Hybrid Ma 4:1185–1204

    Article  CAS  Google Scholar 

  41. Fan HM, Yi JB, Yang Y, Kho KW, Tan HR, Shen ZX, Ding J, Sun XW, Olivo MC, Feng YPJAN (2009) Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications. 3:2798–808

  42. Liu XL, Yang Y, Ng CT, Zhao LY, Zhang Y, Bay BH, Fan HM, Ding J (2015) Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Adv Mater 27:1939–1944

    Article  CAS  Google Scholar 

  43. Liu X, Zheng J, Sun W, Zhao X, Li Y, Gong N, Wang Y, Ma X, Zhang T, Zhao LY, Hou Y, Wu Z, Du Y, Fan H, Tian J, Liang XJ (2019) Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis. ACS Nano 13:8811–8825

    Article  CAS  Google Scholar 

  44. Wang X, Pan F, Xiang Z, Zeng Q, Pei K, Che R, Lu W (2020) Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157:130–139

    Article  CAS  Google Scholar 

  45. Yang Y, Liu X-L, Yi JB, Yang Y, Fan HM, Ding J (2012) Stable vortex magnetite nanorings colloid: Micromagnetic simulation and experimental demonstration. J Appl Phys 111:044303

  46. Rothman J, Klaui M, Lopez-Diaz L, Vaz CA, Bleloch A, Bland JA, Cui Z, Speaks R (2001) Observation of a bi-domain state and nucleation free switching in mesoscopic ring magnets. Phys Rev Lett 86:1098–1101

    Article  CAS  Google Scholar 

  47. Zhu FQ, Chern GW, Tchernyshyov O, Zhu XC, Zhu JG, Chien CL (2006) Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings. Phys Rev Lett 96:027205

  48. Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperth 18:267–284

    Article  CAS  Google Scholar 

  49. Hergt R, Dutz S (2007) Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311:187–192

    Article  CAS  Google Scholar 

  50. Das R, Alonso J, Nemati Porshokouh Z, Kalappattil V, Torres D, Phan M-H, Garaio E, García JÁ, Sanchez Llamazares JL, Srikanth H (2016) Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J Physical Chem C 120:10086–10093

    Article  CAS  Google Scholar 

  51. Noh SH, Na W, Jang JT, Lee JH, Lee EJ, Moon SH, Lim Y, Shin JS, Cheon J (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12:3716–3721

    Article  CAS  Google Scholar 

  52. Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C (2016) Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 10:2436–2446

    Article  CAS  Google Scholar 

  53. He S, Zhang H, Liu Y, Sun F, Yu X, Li X, Zhang L, Wang L, Mao K, Wang G, Lin Y, Han Z, Sabirianov R, Zeng H (2018) Maximizing specific loss power for magnetic hyperthermia by hard-soft mixed ferrites. Small 14:1800135

    Article  Google Scholar 

  54. Yang Y, Liu X, Lv Y, Herng TS, Xu X, Xia W, Zhang T, Fang J, Xiao W, Ding J (2015) Orientation mediated enhancement on magnetic hyperthermia of Fe3O4Nanodisc. Adv Func Mater 25:812–820

    Article  CAS  Google Scholar 

  55. Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 129:2628–2635

    Article  CAS  Google Scholar 

  56. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, Gazeau F, Manna L, Pellegrino T (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091

    Article  CAS  Google Scholar 

  57. Sathya A, Guardia P, Brescia R, Silyestri N, Pugliese G, Nitti S, Manna L, Pellegrino T (2016) CoxFe3-xO4 nanocubes for theranostic applications: effect of cobalt content and particle size. Chem Mater 28:1769–1780

    Article  CAS  Google Scholar 

  58. Jung CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. J Magnetic resonance imaging 13:661–674

    Article  CAS  Google Scholar 

  59. Wang Y-XJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. J European radiology 11:2319–2331

    Article  CAS  Google Scholar 

  60. Wang Y-XJ (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. J Quantitative imaging in medicine surgery 1:35–40

    Google Scholar 

  61. Orza A, Wu H, Xu Y, Lu Q, Mao H (2017) One-step facile synthesis of highly magnetic and surface functionalized iron oxide nanorods for biomarker-targeted applications. ACS Appl Mater Interfaces 9:20719–20727

    Article  CAS  Google Scholar 

  62. Caetano BL, Guibert C, Fini R, Fresnais J, Pulcinelli SH, Ménager C, Santilli CV (2016) Magnetic hyperthermia-induced drug release from ureasil-PEO-γ-Fe2O3 nanocomposites. RSC Adv 6:63291–63295

    Article  CAS  Google Scholar 

  63. Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267–284

    Article  CAS  Google Scholar 

  64. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181

    Article  Google Scholar 

  65. Thirunavukkarasu GK, Cherukula K, Lee H, Jeong YY, Park I-K, Lee JY (2018) Magnetic field-inducible drug-eluting nanoparticles for image-guided thermo-chemotherapy. Biomaterials 180:240–252

    Article  CAS  Google Scholar 

  66. May JP, Li SD (2013) Hyperthermia-induced drug targeting. Expert Opin Drug Deliv 10:511–527

    Article  CAS  Google Scholar 

Download references

Funding

This project has been assisted by the program of Shanghai Technology Research Leader (18XD1423800), the National Natural Science Foundation of China (Grant No 51671146, 51971162, U1933112), the Fundamental Research Funds for the Central Universities, Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research (2019CXJQ01), and the “Crossover” Research Fund of the Ninth People's Hospital of Shanghai Jiao Tong University (No. JYJC202102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuquan Xiong, Wenwen Jia, Jingzhou Hu or Wei Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 222 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Qi, Y., Hu, Z. et al. Fe3O4@PVP@DOX magnetic vortex hybrid nanostructures with magnetic-responsive heating and controlled drug delivery functions for precise medicine of cancers. Adv Compos Hybrid Mater 5, 1786–1798 (2022). https://doi.org/10.1007/s42114-022-00433-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00433-2

Keywords

Navigation