Skip to main content

Advertisement

Log in

Ultra-strong and environmentally friendly waste polyvinyl chloride/paper biocomposites

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Developing new biocomposites from waste paper and plastics could help meet global sustainability goals while addressing environmental issues. In this paper, the polyvinyl chloride (PVC) powder and paper floc were mixed in different proportions and subjected to dry hot molding (180 ℃, 73.8 MPa, 1 h) to prepare waste PVC/paper biocomposites with excellent performance. From the scanning electron microscope (SEM) images of the PVC/paper biocomposite, it can be seen that the PVC powder filled the gaps between multiple paper floc. The combination between PVC powder and paper floc is the tightest in PVC/paper (NaOH) 3:7. Therefore, the comprehensive mechanical properties of PVC/paper (NaOH) 3:7 are the best (The tensile strength is as high as 183.98 MPa, and the flexural strength has also reached a satisfactory 66.60 MPa). In addition, the water absorption of PVC/paper biocomposites generally showed a decreasing trend as the proportion of PVC powder in the composite increased. When the ratio of PVC powder and 3% sodium hydroxide–treated paper wadding is 7:3, the water absorption rate is only 8.29%. Based on the findings, a novel and practical method for recycling paper and plastic product wastes is demonstrated, which is in line with the development concept of low-carbon environmental protection and sustainable economic growth advocated globally. In addition, wood-plastic composite materials are widely used in construction, automobiles, logistics and gardens due to their excellent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adam V, Yang T, Nowack B (2019) Toward an ecotoxicological risk assessment of microplastics: comparison of available hazard and exposure data in freshwaters. Environ Toxicol Chem 38(2):436–447. https://doi.org/10.1002/etc.4323

    Article  CAS  Google Scholar 

  2. Adyel TM (2020) Accumulation of plastic waste during COVID-19. Sci 369(6509):1314–1315. https://doi.org/10.1126/science.abd9925

    Article  Google Scholar 

  3. Harris PT (2020) The fate of microplastic in marine sedimentary environments: a review and synthesis. Mar pollut bull 158. https://doi.org/10.1016/j.marpolbul.2020.111398

  4. Akarsu C, Kumbur H, Gokdag K, Kideys AE, Sanchez-Vidal A (2020) Microplastics composition and load from three wastewater treatment plants discharging into Mersin Bay, north eastern Mediterranean Sea. Mar pollut bull 150. https://doi.org/10.1016/j.marpolbul.2019.110776

  5. Xu D, Huang G, Guo L, Chen Y, Ding C, Liu C (2022) Enhancement of catalytic combustion and thermolysis for treating polyethylene plastic waste. Adv Compos Hybrid Mater 5(1):113–129. https://doi.org/10.1007/s42114-021-00317-x

    Article  CAS  Google Scholar 

  6. M’Rabet C, Pringault O, Zmerli-Triki H, Ben Gharbia H, Couet D, Yahia OK-D (2018) Impact of two plastic-derived chemicals, the Bisphenol A and the di-2-ethylhexyl phthalate, exposure on the marine toxic dinoflagellate Alexandrium pacificum. Mar pollut bull 126:241–249. https://doi.org/10.1016/j.marpolbul.2017.10.090

    Article  CAS  Google Scholar 

  7. Kooi M, Reisser J, Slat B, Ferrari FF, Schmid MS, Cunsolo S, Brambini R, Noble K, Sirks L-A, Linders TEW, Schoeneich-Argent RI, Koelmans AA (2016) The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci Rep 6. https://doi.org/10.1038/srep33882

  8. Karimi-Maleh H, Orooji Y, Karimi F, Karaman C, Vasseghian Y, Dragoi EN, Karaman O (2023) Integrated approaches for waste to biohydrogen using nanobiomediated towards low carbon bioeconomy. Adv Compos Hybrid Mater 6(1). https://doi.org/10.1007/s42114-022-00597-x

  9. Schuyler Q, Hardesty BD, Lawson TJ, Opie K, Wilcox C (2018) Economic incentives reduce plastic inputs to the ocean. Mar policy 96:250–255. https://doi.org/10.1016/j.marpol.2018.02.009

    Article  Google Scholar 

  10. Kumari M, Chaudhary GR, Chaudhary S, Umar A (2021) Rapid analysis of trace sulphite ion using fluorescent carbon dots produced from single use plastic cups. Eng Sci https://doi.org/10.30919/es8d556

  11. Bharimalla AK, Deshmukh SP, Vigneshwaran N, Patil PG, Prasad V (2017) Nanocellulose-polymer composites for applications in food packaging: current status, future prospects and challenges. Polym-Plast Technol 56(8):805–823. https://doi.org/10.1080/03602559.2016.1233281

    Article  CAS  Google Scholar 

  12. Ge S, Liang Y, Zhou C, Sheng Y, Zhang M, Cai L, Zhou Y, Huang Z, Manzo M, Wu C, Xia C (2022) The potential of Pinus armandii Franch for high-grade resource utilization. Biomass Bioenergy 158. https://doi.org/10.1016/j.biombioe.2022.106345

  13. You S, Li W, Yan W-C, Sonne C (2021) Green strategies for sustainable packaging Sci 372(6544):802–802. https://doi.org/10.1126/science.abj1042

    Article  CAS  Google Scholar 

  14. Reynolds C, Ryan PG (2018) Micro-plastic ingestion by waterbirds from contaminated wetlands in South Africa. Mar Pollut Bull 126:330–333. https://doi.org/10.1016/j.marpolbul.2017.11.021

    Article  CAS  Google Scholar 

  15. Turner A (2016) Heavy metals, metalloids and other hazardous elements in marine plastic litter. Mar Pollut Bull 111(1–2):136–142. https://doi.org/10.1016/j.marpolbul.2016.07.020

    Article  CAS  Google Scholar 

  16. Luttenberger LR (2020) Waste management challenges in transition to circular economy - case of Croatia. J Clean Prod 256. https://doi.org/10.1016/j.jclepro.2020.120495

  17. Koelmans AA, Nor NHM, Hermsen E, Kooi M, Mintenig SM, De France J (2019) Microplastics in freshwaters and drinking water: critical review and assessment of data quality. Water Res 155:410–422. https://doi.org/10.1016/j.watres.2019.02.054

    Article  CAS  Google Scholar 

  18. Tekman MB, Wekerle C, Lorenz C, Primpke S, Hasemann C, Gerdts G, Bergmann M (2020) Tying up loose ends of microplastic pollution in the arctic: distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN Observatory. Environ Sci Technol 54(7):4079–4090. https://doi.org/10.1021/acs.est.9b06981

    Article  CAS  Google Scholar 

  19. Ryan PG, Suaria G, Perold V, Pierucci A, Bornman TG, Aliani S (2020) Sampling microfibres at the sea surface: the effects of mesh size, sample volume and water depth. Environ Pollut 258. https://doi.org/10.1016/j.envpol.2019.113413

  20. Markic A, Gaertner J-C, Gaertner-Mazouni N, Koelmans AA (2020) Plastic ingestion by marine fish in the wild. Crit Rev Env Sci Tec 50(7):657–697. https://doi.org/10.1080/10643389.2019.1631990

    Article  Google Scholar 

  21. Dehaut A, Cassone A-L, Frere L, Hermabessiere L, Himber C, Rinnert E, Riviere G, Lambert C, Soudant P, Huvet A, Duflos G, Paul-Pont I (2016) Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ Pollut 215:223–233. https://doi.org/10.1016/j.envpol.2016.05.018

    Article  CAS  Google Scholar 

  22. Zhang Z, Chen Y (2020) Effects of microplastics on wastewater and sewage sludge treatment and their removal: a review. Chem Eng J 382. https://doi.org/10.1016/j.cej.2019.122955

  23. Boerger CM, Lattin GL, Moore SL, Moore CJ (2010) Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar pollut bull 60(12):2275–2278. https://doi.org/10.1016/j.marpolbul.2010.08.007

    Article  CAS  Google Scholar 

  24. Auta HS, Emenike CU, Fauziah SH (2017) Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ Int 102:165–176. https://doi.org/10.1016/j.envint.2017.02.013

    Article  CAS  Google Scholar 

  25. Dussud C, Meistertzheim AL, Conan P, Pujo-Pay M, George M, Fabre P, Coudane J, Higgs P, Elineau A, Pedrotti ML, Gorsky G, Ghiglione JF (2018) Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut 236:807–816. https://doi.org/10.1016/j.envpol.2017.12.027

    Article  CAS  Google Scholar 

  26. de Ruijter VN, Redondo-Hasselerharm PE, Gouin T, Koelmans AA (2020) Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environ Sci Technol 54(19):11692–11705. https://doi.org/10.1021/acs.est.0c03057

    Article  CAS  Google Scholar 

  27. MacArthur DE (2017) Beyond plastic waste Sci 358(6365):843–843. https://doi.org/10.1126/science.aao6749

    Article  CAS  Google Scholar 

  28. Tisler S, Christensen JH (2022) Non-target screening for the identification of migrating compounds from reusable plastic bottles into drinking water. J Hazard Mater 429. https://doi.org/10.1016/j.jhazmat.2022.128331

  29. Lian M, Huang Y, Liu Y, Jiang D, Wu Z, Li B, Xu Q, Murugadoss V, Jiang Q, Huang M, Guo Z (2022) An overview of regenerable wood-based composites: preparation and applications for flame retardancy, enhanced mechanical properties, biomimicry, and transparency energy saving. Adv Compos Hybrid Ma 5(3):1612–1657. https://doi.org/10.1007/s42114-022-00475-6

    Article  Google Scholar 

  30. Mousakhani E, Simons A, Harris D, Yavarkhani M, Anvari A (2022) The reuse of discarded plastic water bottles as an insulating material for external walls in buildings. IOP Conf Ser: Mater Sci Eng 1218(1). https://doi.org/10.1088/1757-899x/1218/1/012051

  31. Angelone S, CauhapéCasaux M, Borghi M, Martinez FO (2015) Green pavements: reuse of plastic waste in asphalt mixtures. Mater Struct 49(5):1655–1665. https://doi.org/10.1617/s11527-015-0602-x

    Article  CAS  Google Scholar 

  32. da Silva AO, Cortez-Vega WR, Prentice C, Fonseca GG (2020) Development and characterization of biopolymer films based on bocaiuva (Acromonia aculeata) flour. Int J Biol Macromol 155:1157–1168. https://doi.org/10.1016/j.ijbiomac.2019.11.083

    Article  CAS  Google Scholar 

  33. Cañado N, Lizundia E, Akizu-Gardoki O, Minguez R, Lekube B, Arrillaga A, Iturrondobeitia M (2022) 3D printing to enable the reuse of marine plastic waste with reduced environmental impacts. J Ind Ecol 22(6):2092–2107. https://doi.org/10.1111/jiec.13302

    Article  Google Scholar 

  34. Ge S, Ma NL, Jiang S, Ok YS, Lam SS, Li C, Shi SQ, Nie X, Qiu Y, Li D, Wu Q, Tsang DCW, Peng W, Sonne C (2020) Processed bamboo as a novel formaldehyde-free high-performance furniture biocomposite. Acs Appl Mater Inter 12(27):30824–30832. https://doi.org/10.1021/acsami.0c07448

    Article  CAS  Google Scholar 

  35. Mitchell J, Vandeperre L, Dvorak R, Kosior E, Tarverdi K, Cheeseman C (2014) Recycling disposable cups into paper plastic composites. Waste Manage 34(11):2113–2119. https://doi.org/10.1016/j.wasman.2014.05.020

    Article  CAS  Google Scholar 

  36. Ge S, Zuo S, Zhang M, Luo Y, Yang R, Wu Y, Zhang Y, Li J, Xia C (2021) Utilization of decayed wood for polyvinyl chloride/wood flour composites. J Mater Res Technol 12:862–869. https://doi.org/10.1016/j.jmrt.2021.03.026

    Article  CAS  Google Scholar 

  37. Khalid MY, Ariff ZU, Ahmed W, Arshad H (2022) Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustainable Mater Technol 31. https://doi.org/10.1016/j.susmat.2021.e00382

  38. Rhein S, Straeter KF (2021) Corporate self-commitments to mitigate the global plastic crisis: recycling rather than reduction and reuse. J Clean Prod 296. https://doi.org/10.1016/j.jclepro.2021.126571

  39. Meng X, Yang H, Lu Z, Liu Y (2022) Study on catalytic pyrolysis and combustion characteristics of waste cable sheath with crosslinked polyethylene. Adv Compos Hybrid Mater 5(4):2948–2963. https://doi.org/10.1007/s42114-022-00516-0

    Article  CAS  Google Scholar 

  40. Ge S, Liu Z, Furuta Y, Peng W (2017) Characteristics of activated carbon remove sulfur particles against smog. Saudi J Biol Sci 24(6):1370–1374. https://doi.org/10.1016/j.sjbs.2016.12.016

    Article  CAS  Google Scholar 

  41. Ye H, Wang Y, Yu Q, Ge S, Fan W, Zhang M, Huang Z, Manzo M, Cai L, Wang L, Xia C (2022) Bio-based composites fabricated from wood fibers through self-bonding technology. Chemosphere 287. https://doi.org/10.1016/j.chemosphere.2021.132436

  42. Yang X, Fan W, Wang H, Shi Y, Wang S, Liew RK, Ge S (2022) Recycling of bast textile wastes into high value-added products: a review. Environ Chem Lett 20:3747–3763. https://doi.org/10.1007/s10311-022-01484-z

    Article  CAS  Google Scholar 

  43. Ge S, Wu Y, Peng W, Xia C, Mei C, Cai L, Shi SQ, Sonne C, Lam SS, Tsang YF (2020) High-pressure CO2 hydrothermal pretreatment of peanut shells for enzymatic hydrolysis conversion into glucose. Chem Eng J 385. https://doi.org/10.1016/j.cej.2019.123949

  44. Ge S, Shi Y, Xia C, Huang Z, Manzo M, Cai L, Ma H, Zhang S, Jiang J, Sonne C, Lam SS (2021) Progress in pyrolysis conversion of waste into value-added liquid pyro-oil, with focus on heating source and machine learning analysis. Energ Convers Manage 245. https://doi.org/10.1016/j.enconman.2021.114638

  45. Ge S, Chen X, Li D, Liu Z, Ouyang H, Peng W, Zhang Z (2018) Hemicellulose structural changes during steam pretreatment and biogradation of Lentinus edodes. Arab J Chem 11(6):771–781. https://doi.org/10.1016/j.arabjc.2017.12.022

    Article  CAS  Google Scholar 

  46. Mai X, Mai J, Liu H, Liu Z, Wang R, Wang N, Li X, Zhong J, Deng Q, Zhang H (2022) Advanced bamboo composite materials with high-efficiency and long-term anti-microbial fouling performance. Adv Compos Hybrid Ma 5(2):864–871. https://doi.org/10.1007/s42114-021-00380-4

    Article  CAS  Google Scholar 

  47. Kang J, Liu T, Lu Y, Lu L, Dong K, Wang S, Li B, Yao Y, Bai Y, Fan W (2022) Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Compos B Eng 245. https://doi.org/10.1016/j.compositesb.2022.110229

  48. Zhang M, Du H, Liu K, Nie S, Xu T, Zhang X, Si C (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Ma 4(4):865–884. https://doi.org/10.1007/s42114-021-00312-2

    Article  CAS  Google Scholar 

  49. Zhu E-Q, Xu G-F, Sun S-F, Yang J, Yang H-Y, Wang D-W, Guo Z-H, Shi Z-J, Deng J (2021) Rosin acid modification of bamboo powder and thermoplasticity of its products based on hydrothermal pretreatment. Adv Compos Hybrid Ma 4(3):584–590. https://doi.org/10.1007/s42114-021-00266-5

    Article  CAS  Google Scholar 

  50. Yao Y, Dou H, Liu T, Wang S, Gao Y, Kang J, Gao X, Xia C, Lu Y, Fan W (2023) Micro-and nano-scale mechanisms of enzymatic treatment on the interfacial behaviors of sisal fiber reinforced bio-based epoxy resin. Ind Crops Prod 194:116319. https://doi.org/10.1016/j.indcrop.2023.116319

  51. Gu L, Han J, Chen M, Zhou W, Wang X, Xu M, Lin H, Liu H, Chen H, Chen J, Zhang Q, Han X (2022) Enabling robust structural and interfacial stability of micron-Si anode toward high-performance liquid and solid-state lithium-ion batteries. Energy Stor Mater 52:547–561. https://doi.org/10.1016/j.ensm.2022.08.028

    Article  Google Scholar 

  52. Han X, Gu L-H, Xu M, Chen M-F, Chen J-Z (2023) Liquid metal welding enabling high loading binder/carbon-free layered oxide cathode toward high-performance liquid and solid-state battery. Rare Met. https://doi.org/10.1007/s12598-022-02229-1

    Article  Google Scholar 

Download references

Funding

The authors thank the National Natural Science Foundation of China (32201491, 31872697), the Hunan Provincial Science and Technology Innovation Leaders (2021RC4033), Natural Science Foundation of Jiangsu Province (BK20200775), Hunan Province Key R&D (2022NK2043), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (21KJB220011).

Author information

Authors and Affiliations

Authors

Contributions

Haoran Ye, Jinxuan Jiang, Yang Yang and Jiangtao Shi wrote and revised the main manuscript text. Huibo Sun, Lei Zhang, and Yiding Zhang prepared all the figures. Yihui Zhou and Rock Keey Liew edited the main manuscript text. Shengbo Ge and Zhongfeng Zhang revised and supported funding. All authors reviewed and revised the manuscript.

Corresponding authors

Correspondence to Shengbo Ge or Zhongfeng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Jiang, J., Yang, Y. et al. Ultra-strong and environmentally friendly waste polyvinyl chloride/paper biocomposites. Adv Compos Hybrid Mater 6, 81 (2023). https://doi.org/10.1007/s42114-023-00664-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00664-x

Keywords

Navigation