Skip to main content

Advertisement

Log in

Development of agricultural waste/recycled plastic/waste oil bio-composite wallpaper based on two-phase dye and liquefaction filling technology

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this paper, a complete biomass composite processing system based on agricultural waste powders, recycled plastics, and waste oil is proposed. The wood-colored wallpaper, the green wallpaper, and the blue wallpaper are produced by this processing system. These wallpapers are new products with low cost, high added value, and environmental friendliness. These wallpapers have also been systematically tested. Based on the analysis of test results, a 3D model of material formation mechanism, liquefaction filling technology, and hybrid network model construction technology are obtained. The experiment found the reasonable RLDPE and RLLDPE ratio (1:0.26), the reasonable ratio of biomass to specialty solvents (1:1.5), the reasonable dose of the solid dye (3%), and the reasonable concentration of dye solutions. Wood-colored bio-composite wallpaper products have a smooth surface, wood color (ΔE = 36.7), natural aroma, and good comprehensive mechanical properties (tensile strength 9.255 MPa; elongation at break 20.998%; Young’s modulus 2229.475 MPa). The processing system and wallpaper products in this article not only promote the plastic recycling economy and sustainable agricultural development but also provide new channels for the development of waste oil reuse and new ideas for the development of high value-added biocomposite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amin KAM (2012) Reinforced materials based on chitosan, TiO2 and Ag composites. Polymers 4(1):590–599. https://doi.org/10.3390/polym4010590

    Article  CAS  Google Scholar 

  • Arena M, Abbate C, Fukushima K, Gennari M (2011) Degradation of poly (lactic acid) and nanocomposites by Bacillus licheniformis. Environ Sci Pollut Res 18(6):865–870. https://doi.org/10.1007/978-3-642-37916-1_30

    Article  CAS  Google Scholar 

  • Barnes SJ (2019) Understanding plastics pollution: the role of economic development and technological research. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.03.108

    Article  CAS  Google Scholar 

  • Bhagat VK, Biswas S, Dehury J (2014) Physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. Polym Compos 35(5):925–930. https://doi.org/10.1002/pc.22736

    Article  CAS  Google Scholar 

  • Cano L, Pollet E, Avérous L, Tercjak A (2017) Effect of TiO2 nanoparticles on the properties of thermoplastic chitosan-based nano-biocomposites obtained by mechanical kneading. Compos A: Appl Sci Manuf 93:33–40. https://doi.org/10.1016/j.compositesa.2016.11.012

    Article  CAS  Google Scholar 

  • Cao G, Zhang X, Wang Y, Zheng F (2008) Estimation of emissions from field burning of crop straw in China. Chin Sci Bull 53(5):784–790 CNKI:SUN:JXTW.0.2008-05-023

    Article  CAS  Google Scholar 

  • Cecchi T, Giuliani A, Iacopini F, Santulli C, Sarasini F, Tirillò J (2019) Unprecedented high percentage of food waste powder filler in poly lactic acid green composites: synthesis, characterization, and volatile profile. Environ Sci Pollut Res 26(7):7263–7271. https://doi.org/10.1007/s11356-019-04187-1

    Article  CAS  Google Scholar 

  • Chatterjee S, Sharma S (2019) Microplastics in our oceans and marine health. Field actions science reports. J Field Actions (Special Issue 19):54–61

  • Cheranov O, Arterburn L, Centeno D, Feuerborn L, Min H, Penrod C et al (2019) Explorations of polyethylene terephthalate (PET) hydrolase for addressing PET plastic pollution. The FASEB Journal 33(1_supplement):lb211–lb211

    Google Scholar 

  • Chivrac F, Pollet E, Dole P, Avérous L (2010) Starch-based nano-biocomposites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr Polym 79(4):941–947. https://doi.org/10.1016/j.carbpol.2009.10.018

    Article  CAS  Google Scholar 

  • Chung K-T (2016) Azo dyes and human health: a review. J Environ Sci Health, Part C 34(4):233–261. https://doi.org/10.1080/10590501.2016.1236602

    Article  CAS  Google Scholar 

  • Clemons C (2002) Wood-plastic composites in the United States: the interfacing of two industries. For Prod J 52(6):10. https://doi.org/10.1016/S1389-9341(02)00014-X

    Article  Google Scholar 

  • d’Ambrières W (2019) Plastics recycling worldwide: current overview and desirable changes. Field actions science reports. J Field Actions (special issue 19):12–21

  • Daugaard AE, Jankova K, Hvilsted S (2014) Poly (lauryl acrylate) and poly (stearyl acrylate) grafted multiwalled carbon nanotubes for polypropylene composites. Polymer 55(2):481–487. https://doi.org/10.1016/j.polymer.2013.12.031

    Article  CAS  Google Scholar 

  • Defruyt S (2019) Towards a new plastics economy. Field actions science reports. J Field Actions (special issue 19):78–81

  • Fangfang D, Zhang M, Jingping W (2011) Preparation and properties of corn stalk fiber/PBS composite. Polym Mater Sci Eng 27(10):41

    Google Scholar 

  • Feng J, Cerniglia CE, Chen H (2012) Toxicological significance of azo dye metabolism by human intestinal microbiota. Front Biosci (Elite edition) 4:568–586. https://doi.org/10.2741/400

    Article  Google Scholar 

  • Gao D, Chang J, Gong X (2007) Research on corn straw cushion packaging material [J]. Packag Eng 1

  • Ge ZH, Si DG, Lan YL, Shi MN. (2017). The effect of modifying agents on the mechanical properties of straw flour/waste plastic composite materials. Paper presented at the Key Engineering Materials

  • Guo F, Aryana S, Han Y, Jiao Y. (2018). A review of the synthesis and applications of polymer–nanoclay composites (Vol. 8)

    Article  Google Scholar 

  • Jain N, Bhatia A, Pathak H (2014) Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res 14(1):422–430 aaqr.2013.01.0031

    Article  Google Scholar 

  • Kaymakci A, Ayrilmis N (2014) Investigation of correlation between Brinell hardness and tensile strength of wood plastic composites. Compos Part B 58:582–585. https://doi.org/10.1016/j.compositesb.2013.11.009

    Article  CAS  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42(4):856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

    Article  CAS  Google Scholar 

  • Li S, Wei J (2012) Evaluation of the influence of homopolymerization on the removal of water-insoluble organics by grafted polypropylene fibers. Mar Pollut Bull 64(6):1172–1176. https://doi.org/10.1016/j.marpolbul.2012.03.021

    Article  CAS  Google Scholar 

  • Lin Z, Zhuang L, LI-juan A, Jiang C, Jing L, Jun W, et al. (2011) Preparation condition optimization of corn stalk fiber cushioning material. Packag Eng 7. https://doi.org/10.3354/cr00999

    Article  Google Scholar 

  • Liu R, Peng Y, Cao J, Chen Y (2014) Comparison on properties of lignocellulosic flour/polymer composites by using wood, cellulose, and lignin flours as fillers. Compos Sci Technol 103:1–7. https://doi.org/10.1016/j.compscitech.2014.08.005

    Article  CAS  Google Scholar 

  • Lowa JH, Andenana N, Rahman W, Rusmana R, Majida RA (2017) Evaluation of rice straw as natural filler for injection molded high density polyethylene bio-composite materials. Chem Eng Trans 56:1081–1086. https://doi.org/10.3303/CET1756181

    Article  Google Scholar 

  • Mallakpour S, Madani M (2015) Effect of functionalized TiO2 on mechanical, thermal and swelling properties of chitosan-based nanocomposite films. Polym-Plast Technol Eng 54(10):1035–1042

    Article  CAS  Google Scholar 

  • Miller S, Billington S, Lepech M (2013) Improvement in environmental performance of poly (β-hydroxybutyrate)-co-(β-hydroxyvalerate) composites through process modifications. J Clean Prod 40:190–198

    Article  CAS  Google Scholar 

  • Nagarajan V, Misra M, Mohanty AK (2013) New engineered biocomposites from poly (3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/poly (butylene adipate-co-terephthalate)(PBAT) blends and switchgrass: fabrication and performance evaluation. Ind Crop Prod 42:461–468. https://doi.org/10.1016/j.indcrop.2012.05.042

    Article  CAS  Google Scholar 

  • Njoku R, Ofili I, Agbiogwu D, Agu C (2012) Effect of alkali treatment and fiber content variation on the tensile properties of coir fiber reinforced cashew nut shell liquid (CNSL) composite. Niger J Technol 31(2):108–110

    Google Scholar 

  • Norranattrakul P, Siralertmukul K, Nuisin R (2013) Fabrication of chitosan/titanium dioxide composites film for the photocatalytic degradation of dye. J Met Mater Miner 23(2)

  • Özmen N (2012) A study of the effect of acetylation on hemp fibres with vinyl acetate. BioResources 7(3):3800–3809

    Google Scholar 

  • Patel B, Acharya S, Mishra D (2012) Environmental effect of water absorption and flexural strength of red mud filled jute fiber/polymer composite. Int J Eng Sci Technol 4(4):49–59. https://doi.org/10.4314/ijest.v4i4.5

    Article  Google Scholar 

  • Pothan LA, Thomas S, Neelakantan N (1997) Short banana fiber reinforced polyester composites: mechanical, failure and aging characteristics. J Reinf Plast Compos 16(8):744–765

    Article  CAS  Google Scholar 

  • Qu C, Li B, Wu H, Giesy JP. (2012). Controlling air pollution from straw burning in China calls for efficient recycling: ACS publications

  • Saba N, Tahir P, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6(8):2247–2273. https://doi.org/10.3390/polym6082247

    Article  CAS  Google Scholar 

  • Satapathy S, Kothapalli RV (2018) Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. J Polym Environ 26(1):200–213. https://doi.org/10.1007/s10924-017-0938-0

    Article  CAS  Google Scholar 

  • Sreekumar PA, Joseph K, Unnikrishnan G, Thomas S (2007) A comparative study on mechanical properties of sisal-leaf fibre-reinforced polyester composites prepared by resin transfer and compression moulding techniques. Compos Sci Technol 67(3):453–461. https://doi.org/10.1016/j.compscitech.2006.08.025

    Article  CAS  Google Scholar 

  • Tajeddin B, Ansari H (2017) The effect of wheat straw bleaching on the some mechanical properties of wheat straw/LDPE biocomposites. J Food Bioprocess Eng 2(2):1–9

    Google Scholar 

  • Uitterhaegen E, Parinet J, Labonne L, Mérian T, Ballas S, Véronèse T et al (2018) Performance, durability and recycling of thermoplastic biocomposites reinforced with coriander straw. Compos A: Appl Sci Manuf 113:254–263 j.compositesa.2018.07.038

    Article  CAS  Google Scholar 

  • Waguespack BL, Hodges SA, Bush ME, Sondergeld LJ, Bushey MM (2005) Capillary electrochromatography column behavior of butyl and lauryl acrylate porous polymer monoliths. J Chromatogr A 1078(1–2):171–180. https://doi.org/10.1016/j.chroma.2005.04.083

    Article  CAS  Google Scholar 

  • Wang C. (2001). Method for manufacturing packaging material and sheets from plant straws: Google patents

    Google Scholar 

  • Wang G, Kawamura K, Xie M, Hu S, Cao J, An Z, Waston JG, Chow JC (2009) Organic molecular compositions and size distributions of Chinese summer and autumn aerosols from Nanjing: characteristic haze event caused by wheat straw burning. Environ Sci Technol 43(17):6493–6499. https://doi.org/10.1021/es803086g

    Article  CAS  Google Scholar 

  • Wei F, Zhang L, Pang Z, Guo S (2011) The economic and environmental analysis of crop residues burning and reutilization in China. Chin Agric Sci Bull. https://doi.org/10.1016/S1671-2927(11)60313-1

    Article  CAS  Google Scholar 

  • Xiue LTJ (2003) Effects of crop straw burning on soil organic matter and soil microbes [j]. Soils 4:16

    Google Scholar 

  • Yang Chunhe BX (2005) Wo Fei agricultural waste pollution and prevention countermeasures. Agric Environ Dev 2008:2115–2118

    Google Scholar 

  • Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M et al (2013) Rapid health transition in China, 1990–2010: findings from the global burden of disease study 2010. Lancet 381(9882):1987–2015. https://doi.org/10.1016/S0140-6736(13)61097-1

    Article  Google Scholar 

  • Yin Z. (2013). Straw plastic and preparation method thereof: Google patents

    Google Scholar 

  • Zhang Y, Zang G-Q, Tang Z-H, Chen X-H, Yu Y-S (2014) Burning straw, air pollution, and respiratory infections in China. Am J Infect Control 42(7):815. https://doi.org/10.1016/j.ajic.2014.03.015

    Article  CAS  Google Scholar 

  • Zykova A, Pantyukhov P, Popov A (2017) Ethylene–octene copolymer–wood flour/oil flax straw biocomposites: effect of filler type and content on mechanical properties. Polym Eng Sci 57(7):756–763. https://doi.org/10.1002/pen.24626

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingtian Xiao.

Additional information

Responsible editor: Ta Yeong Wu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Yu, Z., Qing, S. et al. Development of agricultural waste/recycled plastic/waste oil bio-composite wallpaper based on two-phase dye and liquefaction filling technology. Environ Sci Pollut Res 27, 2599–2621 (2020). https://doi.org/10.1007/s11356-019-07167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07167-7

Keywords

Navigation