Skip to main content
Log in

Effects of Natural Fiber Waste, Content, and Coupling Agent on the Physical and Mechanical Properties of Wood Species–Plastic Composites as Green Materials

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The use of recycled or waste materials is environmentally beneficial. This study focuses on recycled plastic and wood waste which are produced as wood–plastic composites (WPCs). The effect of loading, wood species, and maleic anhydride-grafted polypropylene (MAPP) on the physical and mechanical properties of WPCs is evaluated. Extrusion and compression were employed to produce the composite samples. Three types of wood waste are evaluated, namely rubberwood flour (RWF), coir fiber, and palm fiber at wood loadings of 30, 40, and 50 wt%. The results indicate that loading and wood species significantly affected the hardness, tensile strength, and flexural properties of the WPCs. Moreover, the addition of MAPP had a significant effect on the physical and mechanical properties of WPCs resulting in improved compatibility of wood and polymer matrix and crystallization properties. The highest impact strength (3.88 kJ/m2), tensile strength (25.73 MPa), flexural strength (37.55 MPa), and crystallinity (42.52%) were accomplished at 40 wt% RWF with MAPP. However, the water absorption, hardness, tensile modulus, and flexural modulus of the WPCs increased as the wood loading increased. Moreover, WPCs based on 30 wt% RWF with MAPP had the lowest water absorption (5.59%) after being immersed for 8 weeks. Therefore, this study provides a use for low-cost recycled plastic and wood waste as filler materials for WPCs that can be used in structures and building applications because of their high performance, benefitting both the economy and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data analyzed during this study are available from the corresponding author on reasonable request.

References

  1. G.A. Ormondroyd, J. Kers, in Performance of Bio-based Building Materials. ed. by D. Jones, C. Brischke (Woodhead Publishing, 2017), p.61

    Google Scholar 

  2. T. Gurunathan, S. Mohanty, S.K. Nayak, Compos. Part A Appl. Sci. Manuf. 77, 1 (2015)

    Article  CAS  Google Scholar 

  3. E. Stanaszek-Tomal, I.O.P. Conf, Ser. Mater. Sci. Eng. 603, 1 (2019)

    Google Scholar 

  4. H. Wang, X. Zhang, S. Guo, T. Liu, Polym. Compos. 42, 4174 (2021)

    Article  CAS  Google Scholar 

  5. S.H. Kamarudin, M.S.M. Basri, M. Rayung, F. Abu, S. Ahmad, M.N. Norizan, S. Osman, N. Sarifuddin, M.S.Z.M. Desa, U.H. Abdullah, I.S.M.A. Tawakkal, L.C. Abdullah, Polym. 14, 3698 (2022)

    Article  CAS  Google Scholar 

  6. T. Ratanawilai, K. Taneerat, Constr. Build. Mater. 172, 349 (2018)

    Article  CAS  Google Scholar 

  7. A.C. Jadhav, N.C. Jadhav, Iran. Polym. J. 31, 821 (2022)

    Article  CAS  Google Scholar 

  8. S. Khamtree, T. Ratanawilai, S. Ratanawilai, Mater. Today. Commun. 24, 1 (2020)

    Google Scholar 

  9. C. Srivabut, T. Ratanawilai, S. Hiziroglu, Constr. Build. Mater. 162, 450 (2018)

    Article  CAS  Google Scholar 

  10. P.M. Pasang, Y. Yunianta, T. Estiasih, H. Harijaono, Russ. J. Agric. Soc.-Econ. Sci. 8, 452 (2018)

    Google Scholar 

  11. H. Essabir, R. Boujmal, M.O. Bensalah, R. Bouhfid, Mech. Mater. 98, 36 (2016)

    Article  Google Scholar 

  12. M. Ramesh, L. Rajeshkumar, G. Sasikala, D. Balaji, A. Saravanakumar, V. Bhuvaneswari, R. Bhoopathi, Polym. 14, 589 (2022)

    Article  CAS  Google Scholar 

  13. M.H. Akonda, H.M. El-Dessouky, J. Text. Sci. Technol. 5, 69 (2019)

    Article  Google Scholar 

  14. A.K. Singh, R. Bedi, B.S. Kaith, Mater. Today. Proc. 26, 1293 (2020)

    Article  CAS  Google Scholar 

  15. C.W. Huang, T.C. Yang, K.C. Hung, J.W. Xu, J.H. Wu, Polym. 10, 382 (2018)

    Article  Google Scholar 

  16. G. Pokhrel, D.J. Gardner, Y. Han, Polym. 13, 2769 (2021)

    Article  CAS  Google Scholar 

  17. H. Gupta, H. Kumar, A.K. Gehlaut, S.K. Singh, A. Gaur, S. Sachan, J.W. Park, J. Mater. Cycles. Waste. Manag. 24, 569 (2022)

    Article  CAS  Google Scholar 

  18. S.K. Ramakrishnan, K. Vijayananth, G.P. Muthukutti, P. Spatenka, A. Arivendan, S.P. Ganesan, J. Mater. Cycles. Waste. Manag. 24, 667 (2022)

    Article  Google Scholar 

  19. C. Homkhiew, C. Srivabut, T. Ratanawilai, S. Rawangwong, S. Chantaramanee, J. Mater. Cycles. Waste. Manag. 25, 1444 (2023)

    Article  CAS  Google Scholar 

  20. S. Paul, M. Rahaman, S.K. Ghosh, A. Katheria, T.K. Das, S. Patel, N.C. Das, J. Mater. Cycles. Waste. Manag. 25, 1470 (2023)

    Article  CAS  Google Scholar 

  21. S. Gairola, T.P. Naik, S. Sinha, I. Singh, J. Mater. Cycles. Waste. Manag. 25, 2063 (2023)

    Article  CAS  Google Scholar 

  22. L.N. Megashah, H. Ariffin, M.R. Zakaria, M.A. Hassan, I.O.P. Conf, Ser. Mater. Sci. Eng. 368, 012049 (2018)

    Google Scholar 

  23. B. Abu-Jdayil, M.S. Barkhad, A.H. Mourad, M.Z. Iqbal, J. Build. Eng. 43, 103224 (2021)

    Article  Google Scholar 

  24. J. Zhang, Y. Li, D. Xing, Q. Wang, H. Wang, A. Koubaa, Constr. Build. Mater. 228, 116718 (2019)

    Article  CAS  Google Scholar 

  25. Z. Salleh, K.M. Hyie, M.N. Berhan, Y.M. Taib, N.R.N. Roselina, A.R.M. Razib, Appl. Mech. Mater. 465, 967 (2014)

    Google Scholar 

  26. M. Mohammed, A.J. Jawad, A.M. Mohammed, J.K. Oleiwi, T. Adam, A.F. Osman, O.S. Dahham, B.O. Betar, S.C. Gopinath, M. Jaafar, Polym. Test. 7, 108083 (2023)

    Article  Google Scholar 

  27. S. Lv, X. Liu, J. Gu, Y. Jiang, H. Tan, Y. Zhang, Constr. Build. Mater. 144, 525 (2017)

    Article  CAS  Google Scholar 

  28. D. Friedrich, A. Luible, Constr. Build. Mater. 124, 1142 (2016)

    Article  Google Scholar 

  29. S. Durmaz, Wood. Res. 67, 302 (2022)

    Article  CAS  Google Scholar 

  30. C. Homkhiew, C. Srivabut, S. Rawangwong, W. Boonchouytan, Fibers. Polym. 23, 2679 (2022)

    Article  CAS  Google Scholar 

  31. T. Kongkaew, S. Kumneadklang, J. Panichpakdee, S. Larpkiattaworn, Int. J. Sci. Innov. Technol. 3, 53 (2020)

    Google Scholar 

  32. C. Homkhiew, T. Ratanawilai, W. Thongruang, Appl. Mech. Mater. 368, 785 (2013)

    Article  Google Scholar 

  33. W. Lu, W. Yu, B. Zhang, X. Dou, X. Han, H. Cai, Compos. B Eng. 223, 109117 (2021)

    Article  CAS  Google Scholar 

  34. B. Effah, A.V. Reenen, M. Meincken, Eur. J. Wood. Wood. Prod. 76, 57 (2018)

    Article  CAS  Google Scholar 

  35. S. Khamtree, T. Ratanawilai, S. Ratanawilai, Prog. Ind. Ecol. 12, 297 (2018)

    Article  Google Scholar 

  36. Z. Ranjbarha, P. Aberoomand-Azar, J. Mokhtari-Aliabad, S.A. Mirmohammadi, M. Saber-Tehrani, Polym. Polym. Compos. 29, S106 (2021)

    CAS  Google Scholar 

  37. S. Yang, B. Wei, Q. Wang, Compos. B Eng. 200, 108347 (2020)

    Article  CAS  Google Scholar 

  38. A. Nuryawan, N.O. Hutauruk, E.Y.S. Purba, N. Masruchin, R. Batubara, I. Risnasari, F.K. Satrio, Rahmawaty, M. Basyuni, D. McKay, PLoS ONE 15, e0236406 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. E.O. Olakanmi, E.A. Ogunesan, E. Vunain, R.A. Lafia-Araga, M. Doyoyo, R. Meijboom, Polym. Compos. 37, 2657 (2016)

    Article  CAS  Google Scholar 

  40. Z.A. Nafis, M. Nuzaimah, S.A. Kudus, Y. Yusuf, R.A. Ilyas, V.F. Knight, M.N. Norrrahim, Materials 16, 479 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. R. Huang, C. Mei, X. Xu, Materials 8, 8510 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. Khamtree, T. Ratanawilai, S. Ratanawilai, J. Thermoplast. Compos. Mater. 33, 599 (2020)

    Article  CAS  Google Scholar 

  43. T. Ratanawilai, V. Leelasilapasart, C. Srivabut, S. Ratanawilai, Fibers. Polym. 23, 1956 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Nakhon Si Thammarat Rajabhat University (grant numbers 017/2564). The authors would also like to thank the Faculty of Industrial Technology and Faculty of Science and Technology, Songkhla Rajabhat University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Khamtree.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamtree, S., Srivabut, C., Khamtree, S. et al. Effects of Natural Fiber Waste, Content, and Coupling Agent on the Physical and Mechanical Properties of Wood Species–Plastic Composites as Green Materials. Fibers Polym 25, 1391–1402 (2024). https://doi.org/10.1007/s12221-024-00493-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00493-9

Keywords

Navigation