Skip to main content
Log in

Chemical composition, pharmacodynamic activity of processed Aconitum brachypodum Diels., and molecular docking analysis of its active target

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Aconitum brachypodum Diels. (AB.) is a plant of Aconitum L. The dried roots of AB have analgesic and anti-inflammatory activity. However, the processing is required to reduce toxicity before use because of its high toxicity. Studies on the toxicity, pharmacodynamics, and chemical composition of processed Aconitum brachypodum Diels. PAB. are still lacking at present. In this study, the composition changes of AB and PAB were determined by ultra-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UPLC-QE-Orbitrap-MS). The intensity of diester alkaloids was greatly reduced, while the monoester alkaloids were significantly increased. An acute toxicity experiment was used to evaluate the toxicity differences between AB and PAB, while the acetic acid-induced writhing pain experiment and croton oil-induced ear edema experiment were applied to evaluate the analgesic and anti-inflammatory properties. The acute toxicity test of AB showed that the median lethal dose (LD50) was 1.37 g/kg, while the maximal feasible dose (MFD) of PAB was 30.0 g/kg. It was apparent that the toxicity of PAB was significantly reduced. The alkaloid component of PAB could significantly inhibit the mice’s ear edema and significantly reduce the writhing times of mice. Based on the above findings, ten compounds, including songoramine (1), neoline (2), bullatine C (3), dihydroatisine (4), bullatineA (5), maltol (6), 15-O-acetylsongorine (7), 15-O-acetylsongoramine (8), songorine (9), and aldohypaconitine (10) were isolated and identified from the alkaloid component of PAB. Compounds 4, 6, 8, and 10 were firstly separate from Aconitum brachypodum Diels. Finally, molecular docking to anti-inflammatory analgesic target protein was carried out. The results indicated that 15-O-acetylsongoramine has a strong binding ability with target proteins, which may interact with the target protein Akt1 of phosphatidylinositol-3-kinase/serine-threonine kinase (Pi3k/Akt) pathway, while, adjust the downstream nuclear factor kappa B (NF-κB) signaling pathway to play an anti-inflammatory analgesic effect.

Graphical Abstract

UPLC-QE-Orbitrap-MS, acute toxicity, analgesia, anti-inflammatory experiment, and molecular docking analysis were made to speculate the toxicity and efficacy of processed Aconitum brachypodum

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data used are given in the paper or are taken from references that are properly cited.

References

  1. Du HY, An YL, Wei YH et al (2019) Experimental and numerical studies on strength and ductility of gradient-structured iron plate obtained by surface mechanical-attrition treatment. MaterSci Eng A 744:471–480. https://doi.org/10.1016/j.msea.2018.12.052

  2. Zhu H, Hu W, Zhao S et al (2020) Flexible and thermally stable superhydrophobic surface with excellent anti-corrosion behavior. J Mater Sci 55(5):2215–2225. https://doi.org/10.1007/s10853-019-04050-1

    Article  CAS  Google Scholar 

  3. Zhu H, Hu W, Xu Y et al (2019) Gradient structure based dual-robust superhydrophobic surfaces with high-adhesive force. Appl Surf Sci 463:427–434. https://doi.org/10.1016/j.apsusc.2018.08.241

  4. Li G, Shen R, Hu S et al (2022) Norbornene-based acid–base blended polymer membranes with low ion exchange capacity for proton exchange membrane fuel cell. Adv Compos Hybrid Mater 5(3):2131–2137. https://doi.org/10.1007/s42114-022-00559-3

    Article  CAS  Google Scholar 

  5. Mu Q, Liu R, Kimura H et al (2023) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater 6(1):23. https://doi.org/10.1007/s42114-022-00607-y

    Article  CAS  Google Scholar 

  6. Li X, Zhao S, Hu W et al (2019) Robust superhydrophobic surface with excellent adhesive properties based on benzoxazine/epoxy/mesoporous SiO2. Appl Surf Sci 481:374–378. https://doi.org/10.1016/j.apsusc.2019.03.114

  7. Bi J, Yan Z, Hao L et al (2023) Improving water resistance and mechanical properties of waterborne acrylic resin modified by octafluoropentyl methacrylate. J Mater Sci 58(3):1452–1464. https://doi.org/10.1007/s10853-022-07956-5

    Article  CAS  Google Scholar 

  8. Ping D, Yi F, Zhang G et al (2023) NH4Cl-assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J Mater Sci Technol 142:1–9. https://doi.org/10.1016/j.jmst.2022.10.006

    Article  Google Scholar 

  9. Ucar M, Evcin A, Celen O (2022) Development and characterisation of multifunctional surface coatings for photovoltaic panels. Emerg Mater Res 11(1):19–32. https://doi.org/10.1680/jemmr.21.00041

    Article  Google Scholar 

  10. Bushnell DM (2021) Prospective futures of civilian air transportation. Eng Sci 16:5–8. https://doi.org/10.30919/es8d565

  11. Guo Y, Xu J, Lan C et al (2021) Broadband and high-efficiency linear polarization converter based on reflective metasurface. Eng Sci 14:39–45. https://doi.org/10.30919/es8d1169

  12. Yin H, Zhong W, Yin M et al (2022) Carboxyl-functionalized poly(arylene ether nitrile)-based rare earth coordination polymer nanofibrous membrane for highly sensitive and selective sensing of Fe3+ ions. Adv Compos Hybrid Mater 5(3):2031–2041. https://doi.org/10.1007/s42114-022-00547-7

    Article  CAS  Google Scholar 

  13. Xie W, Yao F, Gu H et al (2022) Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. Adv Compos Hybrid Mater 5(2):1003–1016. https://doi.org/10.1007/s42114-021-00413-y

    Article  CAS  Google Scholar 

  14. Turna IB, Er Z (2022) Performance monitoring of different types of photovoltaic cells. Emerg Mater Res 11(1):60–66. https://doi.org/10.1680/jemmr.20.00251

    Article  Google Scholar 

  15. Scaffaro R, Maio A, Gammino M (2022) Hybrid biocomposites based on polylactic acid and natural fillers from Chamaerops humilis dwarf palm and Posidonia oceanica leaves. Adv Compos Hybrid Mater 5(3):1988–2001. https://doi.org/10.1007/s42114-022-00534-y

    Article  CAS  Google Scholar 

  16. Kuang T, Ju J, Liu T et al (2022) A facile structural manipulation strategy to prepare ultra-strong, super-tough, and thermally stable polylactide/nucleating agent composites. Adv Compos Hybrid Mater 5(2):948–959. https://doi.org/10.1007/s42114-021-00390-2

    Article  CAS  Google Scholar 

  17. Lian M, Huang Y, Liu Y et al (2022) An overview of regenerable wood-based composites: preparation and applications for flame retardancy, enhanced mechanical properties, biomimicry, and transparency energy saving. Adv Compos Hybrid Mater 5(3):1612–1657. https://doi.org/10.1007/s42114-022-00475-6

    Article  Google Scholar 

  18. Chu T, Gao Y, Yi L et al (2022) Highly fire-retardant optical wood enabled by transparent fireproof coatings. Adv Compos Hybrid Mater 5(3):1821–1829. https://doi.org/10.1007/s42114-022-00440-3

    Article  CAS  Google Scholar 

  19. Kuang T, Chen S, Gu Z et al (2022) A facile approach to fabricate load-bearing porous polymer scaffolds for bone tissue engineering. Adv Compos Hybrid Mater 5(2):1376–1384. https://doi.org/10.1007/s42114-022-00418-1

    Article  CAS  Google Scholar 

  20. Gao T, Ma Y, Ji L et al (2022) Nickel-coated wood-derived porous carbon (Ni/WPC) for efficient electromagnetic interference shielding. Adv Compos Hybrid Mater 5(3):2328–2338. https://doi.org/10.1007/s42114-022-00420-7

    Article  CAS  Google Scholar 

  21. Liang C, Du Y, Wang Y et al (2021) Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Adv Compos Hybrid Mater 4(4):979–988. https://doi.org/10.1007/s42114-021-00274-5

    Article  CAS  Google Scholar 

  22. Pan D, Yang G, Abo-Dief HM et al (2022) Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett 14(1):118. https://doi.org/10.1007/s40820-022-00863-z

    Article  CAS  Google Scholar 

  23. Kuang T, Zhang M, Chen F et al (2023) Creating poly(lactic acid)/carbon nanotubes/carbon black nanocomposites with high electrical conductivity and good mechanical properties by constructing a segregated double network with a low content of hybrid nanofiller. Adv Compos Hybrid Mater 6(1):48. https://doi.org/10.1007/s42114-022-00622-z

    Article  CAS  Google Scholar 

  24. Li Y, Meng Y, Shen SK et al (2012) Karyological studies of Aconitum brachypodum and related species. Cytologia 77(4):491–498. https://doi.org/10.1508/CYTOLOGIA.77.491

    Article  Google Scholar 

  25. Shen Y, Zuo AX, Jiang ZY et al (2010) Two new diterpenoid alkaloids from Aconitum brachypodum. Bull Korean Chem Soc 31(11):3301. https://doi.org/10.5012/bkcs.2010.31.11.3301

    Article  CAS  Google Scholar 

  26. Singhuber J, Zhu M, Prinz S et al (2009) Aconitum in traditional Chinese medicine: a valuable drug or an unpredictable risk? J Ethnopharmacol 126(1):18–30. https://doi.org/10.1016/j.jep.2009.07.031

    Article  Google Scholar 

  27. Luo HF, Wang H, Huang XD et al (2008) Preparation and in vitro evaluation of compound Aconitum brachypodum patches. Chin J Pharm 39(9):662–666. https://doi.org/10.3969/j.issn.1001-8255.2008.09.010

    Article  CAS  Google Scholar 

  28. Hao DC, Gu XJ, Xiao PG et al (2013) Recent advances in the chemical and biological studies of Aconitum pharmaceutical resources. J Chin Pharm Sci 22(3):209–221. https://doi.org/10.5246/jcps.2013.03.030

    Article  CAS  Google Scholar 

  29. Yang L, Zhang Y, Mei S et al (2019) Diterpenoid alkaloids from the roots of Aconitum brachypodum Diels. And their chemotaxonomic significance. Biochem Syst Ecol 85:43–45. https://doi.org/10.1016/J.BSE.2019.05.004

    Article  CAS  Google Scholar 

  30. Xiao PG, Wang FP, Gao F et al (2006) A pharmacophylogenetic study of Aconitum L.(Ranunculaceae) from China. J Syst Evol 44(1):1. https://doi.org/10.1360/aps050046

  31. Wang X, Wang D, Lai G et al (2018) Diterpenoid alkaloids from Aconitum brachypodum. Chem Nat Compd 54(1):137–141. https://doi.org/10.1007/s10600-018-2276-4

    Article  CAS  Google Scholar 

  32. Yang LG, Zhang YJ, Xie JY et al (2016) Diterpenoid alkaloids from the roots of Aconitum brachypodum Diels. J Asian Nat Prod Res 18(9):908–912. https://doi.org/10.1080/10286020.2016.1173677

    Article  CAS  Google Scholar 

  33. Shen Y, Zuo AX, Jiang ZY et al (2010) Four new nor-diterpenoid alkaloids from Aconitum brachypodum. Helv Chim Acta 93(5):863–869. https://doi.org/10.1002/hlca.200900297

    Article  CAS  Google Scholar 

  34. Huang YF, He F, Cui H et al (2022) Systematic investigation on the distribution of four hidden toxic Aconitum alkaloids in commonly used Aconitum herbs and their acute toxicity. J Pharm Biomed Anal 208:114471. https://doi.org/10.1016/j.jpba.2021.114471

  35. Ge YB, Jiang Y, Zhou H et al (2016) Antitoxic effect of Veratrilla baillonii on the acute toxicity in mice induced by Aconitum brachypodum, one of the genus Aconitum. J Ethnopharmacol 179:27–37. https://doi.org/10.1016/j.jep.2015.12.030

    Article  Google Scholar 

  36. Fraser SP, Salvador V, Manning EA et al (2003) Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility J Cell Physiol 195(3):479–487. https://doi.org/10.1002/jcp.10312

    Article  CAS  Google Scholar 

  37. Belgium LB, Handley UA, Marsden UA et al (1998) The effects of Aconitum alkaloids on the central nervous system. Prog Neurobiol 56(2):211–235. https://doi.org/10.1016/S0301-0082(98)00037-9

    Article  Google Scholar 

  38. Chan TYK (2009) Aconite poisoning. Clin Toxicol 47(4):279–285. https://doi.org/10.1080/15563650902904407

    Article  CAS  Google Scholar 

  39. Hu W, Huang J, Zhang X et al (2020) A mechanically robust and reversibly wettable benzoxazine/epoxy/mesoporous TiO2 coating for oil/water separation. Appl Surf Sci 507:145168. https://doi.org/10.1016/j.apsusc.2019.145168

  40. Wang Z, Zhu H, Cao N et al (2017) Superhydrophobic surfaces with excellent abrasion resistance based on benzoxazine/mesoporous SiO2. Mater Lett 186:274–278. https://doi.org/10.1016/j.matlet.2016.10.010

    Article  CAS  Google Scholar 

  41. Zhu Q, Zhao Y, Miao B et al (2022) Hydrothermally synthesized ZnO-RGO-PPy for water-borne epoxy nanocomposite coating with anticorrosive reinforcement. Prog Org Coat 172:107153. https://doi.org/10.1016/j.porgcoat.2022.107153

  42. Yu Z, Yan Z, Zhang F et al (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875. https://doi.org/10.1016/j.porgcoat.2022.106875

  43. Xu J, Zhu P, El Azab IH et al (2022) An efficient bifunctional Ni-Nb2O5 nanocatalysts for the hydrodeoxygenation of anisole. Chin J Chem Eng 49:187–197. https://doi.org/10.1016/j.cjche.2022.07.009

    Article  CAS  Google Scholar 

  44. Zhang Y, Cao L, Fu H et al (2022) Effect of sulfamethazine on anaerobic digestion of manure mediated by biochar. Chemosphere 306:135567. https://doi.org/10.1016/j.chemosphere.2022.135567

  45. Feng YH, Li XL, Jin G et al (2015) Preparation and properties of several Chinese herbal residue/polylactic acid composites. J Thermoplast Compos Mater 28(2):214–224. https://doi.org/10.1177/0892705713475369

    Article  CAS  Google Scholar 

  46. Wang JY, Yang FX, Chen CW et al (2022) Study on preparation and performance of anisic acid/catechin modified polypropylene antibacterial film. J Funct Mater 53(02):2174–2181. https://doi.org/10.3969/j.issn.1001-9731.2022.02.026

    Article  CAS  Google Scholar 

  47. Wei SM, Wang YH, Tang ZS et al (2020) Preparation of silver nanoparticles by extract of Yinqiao Jiedu Mixture waste and its antioxidative and antibacterial activity evaluation. Chin Tradit Herbal Drugs 51(16):4169–4175. https://doi.org/10.7501/j.issn.0253-2670.2020.16.009

    Article  Google Scholar 

  48. Wang YH, Zou TY, Su R et al (2022) Green synthesis of silver nanoparticles using Glabrous sarcandra herb residues and anticancer activity in vitro. Chin Tradit Herbal Drugs 53(07):1964–1972. https://doi.org/10.7501/j.issn.0253-2670.2022.07.005

    Article  Google Scholar 

  49. Sun A, Gao B, Ding X et al (2012) Quantitative and qualitative analysis of Aconitum alkaloids in raw and processed chuanwu and caowu by HPLC in combination with automated analytical system and ESI/MS/MS. J Anal Methods Chem 2012:936131. https://doi.org/10.1155/2012/936131

  50. Liu M, Cao Y, Lv D et al (2017) Effect of processing on the alkaloids in Aconitum tubers by HPLC-TOF/MS. J Pharm Anal 7(3):170–175. https://doi.org/10.1016/j.jpha.2017.01.001

    Article  Google Scholar 

  51. Li QX, Wang H, Xiao QQ et al (1995) The evaluation and calculation of median lethal dose (LD50) using Bliss method. J Math Med 8(4):318–320. CNKI:SUN:SLYY.0.1995-04-009

  52. Kelechi M, Uzoma AI (2015) Anti-inflammatory activities of the leaf chloroform extract of Palisota hirsuta. J Adv Med Pharm Sci 2:57–63. https://doi.org/10.9734/JAMPS/2015/13813

    Article  Google Scholar 

  53. Li JS, Zhao ZZ, Miao XD et al (2021) Mechanism of Olibanum-Myrrha in treatment of rheumatoid arthritis based on network pharmacology and molecular docking. China J Chin Mater Med 46(10):2371–2379. https://doi.org/10.19540/j.cnki.cjcmm.20201126.401

  54. Shivamurthy RC, Ravindranath BS, Santhosh KH et al (2022) Comparative genomics based putative drug targets identification, homology modeling, virtual screening and molecular docking studies in Chlamydophila Pneumoniae. Eng Sci 19:125–135. https://doi.org/10.30919/es8d645

  55. Quiroga R, Villarreal MA (2016) Vinardo: a scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One 11(5):e0155183. https://doi.org/10.1371/journal.pone.0155183

  56. Zhang C, Yi Y, Chen J et al (2015) In vivo efficacy and toxicity studies of a novel antibacterial agent: 14-o-[(2-amino-1,3,4-thiadiazol-5-yl)thioacetyl] mutilin. Molecules 20(4):5299–5312. https://doi.org/10.3390/molecules20045299

    Article  CAS  Google Scholar 

  57. Lu G, Dong Z, Wang Q et al (2010) Toxicity assessment of nine types of decoction pieces from the daughter root of Aconitum carmichaeli (Fuzi) based on the chemical analysis of their diester diterpenoid alkaloids. Planta Med 76(08):825–830. https://doi.org/10.1055/s-0029-1240688

    Article  CAS  Google Scholar 

  58. Zhang DK, Han X, Li RL et al (2016) Analysis on characteristic constituents of crude Aconitum carmichaelii in different regions based on UPLC-Q-TOF-MS. China J Chin Mater Med 41(3):463–469. https://doi.org/10.4268/cjcmm20160318

    Article  Google Scholar 

  59. Peter K, Schinnerl J, Felsinger S et al (2013) A novel concept for detoxification: complexation between aconitine and liquiritin in a Chinese herbal formula (‘Sini Tang’). J Ethnopharmacol 149(2):562–569. https://doi.org/10.1016/j.jep.2013.07.022

    Article  CAS  Google Scholar 

  60. Lin Y, Shen C, Wang F et al (2021) Network pharmacology and molecular docking study on the potential mechanism of Yi-Qi-Huo-Xue-Tong-Luo formula in treating diabetic peripheral neuropathy. J Diabetes Res 2021:9941791. https://doi.org/10.1155/2021/9941791

    Article  CAS  Google Scholar 

  61. Chen Z, Lin T, Liao X et al (2021) Network pharmacology based research into the effect and mechanism of Yinchenhao Decoction against Cholangiocarcinoma. Chin Med 16(1):13. https://doi.org/10.1186/s13020-021-00423-4

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial support from the Major science and technology project-Biomedicine Major special project of Yunnan province, China (2018ZF011), the National Natural Science Foundation of China (32160414), the Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China (2020-KF14). The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups project under grant number (RGP.1/95/43).

Author information

Authors and Affiliations

Authors

Contributions

C.W. and Z.W. have designed this project and contributed to the main manuscript text. Y.N. conducted experiments and wrote the main manuscript text. X.Li, Z.S., X.Lin, H.M.A.M., E.M.A.W., H.A., and B.B.X. have contributed to conducting experiments, preparing figures, and writing. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Chunhua Wu, Ben Bin Xu or Zhe Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 8273 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Y., Li, X., Wu, C. et al. Chemical composition, pharmacodynamic activity of processed Aconitum brachypodum Diels., and molecular docking analysis of its active target. Adv Compos Hybrid Mater 6, 75 (2023). https://doi.org/10.1007/s42114-023-00640-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00640-5

Keywords

Navigation