Skip to main content
Log in

An error-tolerant serial binary full-adder via a spiking neural P system using HP/LP basic neurons

  • Regular Paper
  • Published:
Journal of Membrane Computing Aims and scope Submit manuscript

Abstract

We present an implementation of an improved adder via a spiking neural P system. Our adder processes arbitrary length binary numbers, and thus, is suitable for cryptographic applications. Due to the use of dual-rail logic, the adder is also error tolerant. We present the implementation concept, as well as a simulation model in System-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen, H., Ionescu, M., & Ishdorj, T.O. (Jun 2006) On the Efficiency of Spiking Neural P Systems. In: Proceedings of 8th International Conference on Electronics, Information, and Communication (ICEIC 2006), Ulaanbaatar, Mongolia (pp. 49–52).

  2. Haiming, C., Ishdorj, T. O., & Păun, G. (2007). Computing along the axon. Progress in Natural Science, 17(4), 417–423. https://doi.org/10.1080/10020070708541018.

    Article  MathSciNet  MATH  Google Scholar 

  3. Ionescu, M., Păun, A., Păun, G., & Pérez-Jiménez, M.J. (2006). Computing with spiking neural p systems: Traces and small universal systems. In: C. Mao & T. Yokomori (Eds.), DNA Computing. DNA 2006. Lecture Notes in Computer Science. Berlin: Springer (vol. 4287, no. 16, pp. 1–16). https://doi.org/10.1007/11925903_1

    MATH  Google Scholar 

  4. Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2), 279–308.

    MathSciNet  MATH  Google Scholar 

  5. Ishdorj, T. O., & Leporati, A. (2008). Uniform solutions to SAT and 3-SAT by spiking neural P systems with pre-computed resources. Natural Computing, 7(4), 519–534. https://doi.org/10.1007/s11047-008-9081-0.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ishdorj, T. O., Leporati, A., Pan, L., & Zeng, X. (2010). Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theoretical Computer Science, 411(25), 2345–2358. https://doi.org/10.1016/j.tcs.2010.01.019.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ishdorj, T.O., Ochirbat, O., & Naimannaran, C. (2019). A \(\mu\)-fluidic biochip design for spiking neural P systems. International Journal of Unconventional Computation (accepted).

  8. Krambeck, R. H., Lee, C. M., & Law, H. S. (1982). High-speed compact circuits with CMOS. IEEE Journal of Solid-State Circuits, 17(3), 614–619. https://doi.org/10.1109/JSSC.1982.1051786.

    Article  Google Scholar 

  9. Ledesma, L., Manrique, D., & Rodríguez-Patón, A. (2005). A tissue P system and a DNA microfluidic device for solving the shortest common superstring problem. Soft Computing, 9(9), 679–685. https://doi.org/10.1007/s00500-004-0398-z.

    Article  MATH  Google Scholar 

  10. Paun, G., Rozenberg, G., & Salomaa, A. (2010). The oxford handbook of membrane computing. Oxford: Oxford University Press Inc.

    Book  MATH  Google Scholar 

  11. Weste, N. H. E., & Eshraghian, K. (1985). Principles of CMOS VLSI design: A systems perspective. Boston: Addison-Wesley Longman Publishing Co. Inc.

    Google Scholar 

  12. Xu, Z., Cavaliere, M., An, P., Vrudhula, S., & Cao, Y. (2014). The stochastic loss of spikes in spiking neural P systems: Design and implementation of reliable arithmetic circuits. Fundamenta Informaticae, 134(1–2), 183–200. https://doi.org/10.3233/FI-2014-1098.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Mongolian Foundation for Science and Technology (Research Grants ShUSS-2018/04 and MOST-MECSS2017001), and the School of Information and Communication Technology, MUST (Research Grant SICT201801). This work has been presented at the 20th Conference on Membrane Computing in Curtea de Arges, Romania, August 5–8, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Cichon.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochirbat, O., Ishdorj, TO. & Cichon, G. An error-tolerant serial binary full-adder via a spiking neural P system using HP/LP basic neurons. J Membr Comput 2, 42–48 (2020). https://doi.org/10.1007/s41965-020-00033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41965-020-00033-3

Keywords

Navigation