Skip to main content

Advertisement

Log in

A comprehensive review of Binary Neural Network

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Deep learning (DL) has recently changed the development of intelligent systems and is widely adopted in many real-life applications. Despite their various benefits and potentials, there is a high demand for DL processing in different computationally limited and energy-constrained devices. It is natural to study game-changing technologies such as Binary Neural Networks (BNN) to increase DL capabilities. Recently remarkable progress has been made in BNN since they can be implemented and embedded on tiny restricted devices and save a significant amount of storage, computation cost, and energy consumption. However, nearly all BNN acts trade with extra memory, computation cost, and higher performance. This article provides a complete overview of recent developments in BNN. This article focuses exclusively on 1-bit activations and weights 1-bit convolution networks, contrary to previous surveys in which low-bit works are mixed in. It conducted a complete investigation of BNN’s development—from their predecessors to the latest BNN algorithms/techniques, presenting a broad design pipeline and discussing each module’s variants. Along the way, it examines BNN (a) purpose: their early successes and challenges; (b) BNN optimization: selected representative works that contain essential optimization techniques; (c) deployment: open-source frameworks for BNN modeling and development; (d) terminal: efficient computing architectures and devices for BNN and (e) applications: diverse applications with BNN. Moreover, this paper discusses potential directions and future research opportunities in each section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 16), 2016, pp 265–283

  • Agaian S (1986) Hadamard matrices and their applications. https://doi.org/10.1007/bfb0101073

  • Agaian S, Sarukhanyan H, Egiazarian K, Astola J (2011) Hadamard transforms, vol 4. SPIE Press, Bellingham

    Book  MATH  Google Scholar 

  • Ajanthan T, Gupta K, Torr P, Hartley R, Dokania P (2021) Mirror descent view for neural network quantization. In: International conference on artificial intelligence and statistics, 2021. PMLR, pp 2809–2817

  • Akhauri Y (2019) HadaNets: flexible quantization strategies for neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, 2019

  • Alizadeh M, Fernández-Marqués J, Lane ND, Gal Y (2018) An empirical study of binary neural networks’ optimisation. In: International conference on learning representations, 2018

  • Bahri M, Bahl G, Zafeiriou S (2021) Binary graph neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp 9492–9501

  • Bai H, Zhang W, Hou L, Shang L, Jin J, Jiang X, Liu Q, Lyu M, King I (2020) BinaryBERT: pushing the limit of BERT quantization. https://doi.org/10.48550/arXiv.2012.15701

  • Bannink T, Bakhtiari A, Hillier A, Geiger L, de Bruin T, Overweel L, Neeven J, Helwegen K (2021) Larq compute engine: design, benchmark, and deploy state-of-the-art binarized neural networks. https://doi.org/10.48550/arXiv.2011.09398

  • Bengio Y, Léonard N, Courville A (2013) Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint. arXiv:1308.3432

  • Bethge J, Yang H, Bornstein M, Meinel C (2019) BinaryDenseNet: developing an architecture for binary neural networks. In: Proceedings of the IEEE/CVF international conference on computer vision (ICCV) workshops, 2019

  • Bethge J, Bartz C, Yang H, Chen Y, Meinel C (2020a) MeliusNet: can binary neural networks achieve mobileNet-level accuracy? arXiv preprint. arXiv:2001.05936

  • Bethge J, Bartz C, Yang H, Meinel C (2020b) BMXNet 2: an open source framework for low-bit networks-reproducing, understanding, designing and showcasing. In: Proceedings of the 28th ACM international conference on multimedia, 2020, pp 4469–4472

  • Blott M, Preußer TB, Fraser NJ, Gambardella G, O’Brien K, Umuroglu Y, Leeser M, Vissers K (2018) FINN-R: an end-to-end deep-learning framework for fast exploration of quantized neural networks. ACM Trans Reconfig Technol Syst 11(3):1–23

    Article  Google Scholar 

  • Borji A, Cheng MM, Hou Q, Jiang H, Li J (2019) Salient object detection: a survey. Comput Vis Media 5(2):117–150

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Article  MATH  Google Scholar 

  • Brock A, De S, Smith SL, Simonyan K (2021) High-performance large-scale image recognition without normalization. arXiv preprint. arXiv:2102.06171

  • Bulat A, Tzimiropoulos G (2017) Binarized convolutional landmark localizers for human pose estimation and face alignment with limited resources. In: Proceedings of the IEEE international conference on computer vision, 2017, pp 3706–3714

  • Bulat A, Tzimiropoulos G (2019) XNOR-Net++: improved binary neural networks. arXiv preprint. arXiv:1909.13863

  • Bulat A, Martinez B, Tzimiropoulos G (2020a) BATS: binary architecture search. arXiv preprint. arXiv:2003.01711

  • Bulat A, Martinez B, Tzimiropoulos G (2020b) High-capacity expert binary networks. In: International conference on learning representations, 2020

  • Caesar H, Uijlings J, Ferrari V (2018) COCO-Stuff: thing and stuff classes in context. In: 2018 IEEE conference on computer vision and pattern recognition (CVPR), 2018. IEEE

  • Campbell RJ, Flynn PJ (2001) A survey of free-form object representation and recognition techniques. Comput Vis Image Underst 81(2):166–210

    Article  MATH  Google Scholar 

  • Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z (2015) MXNet: a flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint. arXiv:1512.01274

  • Chen T, Moreau T, Jiang Z, Zheng L, Yan E, Shen H, Cowan M, Wang L, Hu Y, Ceze L et al (2018) \(\{\)TVM\(\}\): an automated end-to-end optimizing compiler for deep learning. In: 13th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 18), 2018, pp 578–594

  • Chen G, He S, Meng H, Huang K (2020) PhoneBit: efficient GPU-accelerated binary neural network inference engine for mobile phones. In: 2020 Design, automation and test in Europe conference and Exhibition (DATE), 2020, pp 786–791. IEEE

  • Chen T, Zhang Z, Ouyang X, Liu Z, Shen Z, Wang Z (2021) “bnn-bn=?”: training binary neural networks without batch normalization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp 4619–4629

  • Courbariaux M, Hubara I, Soudry D, El-Yaniv R, Bengio Y (2016) Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or \(-1\). arXiv preprint. arXiv:1602.02830

  • Darabi S, Belbahri M, Courbariaux M, Nia VP (2018) Regularized binary network training. arXiv preprint. arXiv:1812.11800

  • Deepa S, Devi BA et al (2011) A survey on artificial intelligence approaches for medical image classification. Indian J Sci Technol 4(11):1583–1595

    Article  Google Scholar 

  • Devlin J, Chang MW, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint. arXiv:1810.04805

  • Diffenderfer J, Kailkhura B (2021) Multi-prize lottery ticket hypothesis: finding accurate binary neural networks by pruning a randomly weighted network. arXiv preprint. arXiv:2103.09377

  • Ding R, Chin TW, Liu Z, Marculescu D (2019) Regularizing activation distribution for training binarized deep networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp 11408–11417

  • Dong Y, Ni R, Li J, Chen Y, Zhu J, Su H (2017) Learning accurate low-bit deep neural networks with stochastic quantization. arXiv preprint. arXiv:1708.01001

  • Dong Y, Ni R, Li J, Chen Y, Su H, Zhu J (2019) Stochastic quantization for learning accurate low-bit deep neural networks. Int J Comput Vis 127(11):1629–1642

    Article  MATH  Google Scholar 

  • Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2007) The PASCAL visual object classes challenge (VOC2007) results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html

  • Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (VOC) challenge. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  • Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A (2012) The PASCAL visual object classes challenge (VOC2012) results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  • Fasfous N, Vemparala MR, Frickenstein A, Frickenstein L, Badawy M, Stechele W (2021) BinaryCoP: binary neural network-based COVID-19 face-mask wear and positioning predictor on edge devices. In: 2021 IEEE international parallel and distributed processing symposium workshops (IPDPSW), 2021. IEEE, pp 108–115

  • Frankle J, Carbin M (2018) The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv preprint. arXiv:1803.03635

  • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  • Frickenstein A, Vemparala MR, Mayr J, Nagaraja NS, Unger C, Tombari F, Stechele W (2020) Binary DAD-Net: binarized driveable area detection network for autonomous driving. In: 2020 IEEE international conference on robotics and automation (ICRA), 2020. IEEE, pp 2295–2301

  • Fromm J, Cowan M, Philipose M, Ceze L, Patel S (2020) Riptide: fast end-to-end binarized neural networks. Proc Mach Learn Syst 2:379–389

    Google Scholar 

  • Gao S, Wang R, Jiang L, Zhang B (2021) 1-Bit waveNet: compressing a generative neural network in speech recognition with two binarized methods. In: 2021 IEEE 16th conference on industrial electronics and applications (ICIEA), 2021, pp 2043–2047

  • Geng T, Li A, Wang T, Wu C, Li Y, Shi R, Wu W, Herbordt M (2020) O3BNN-R: an out-of-order architecture for high-performance and regularized BNN inference. IEEE Trans Parallel Distrib Syst 32(1):199–213

    Article  Google Scholar 

  • Ghasemzadeh M, Samragh M, Koushanfar F (2018) ReBNet: residual binarized neural network. In: 2018 IEEE 26th annual international symposium on field-programmable custom computing machines (FCCM), 2018. IEEE, pp 57–64

  • Gong R, Liu X, Jiang S, Li T, Hu P, Lin J, Yu F, Yan J (2019) Differentiable soft quantization: bridging full-precision and low-bit neural networks. In: Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp 4852–4861

  • Goyal S, Benjamin P (2014) Object recognition using deep neural networks: a survey. arXiv preprint. arXiv:1412.3684

  • Gu J, Li C, Zhang B, Han J, Cao X, Liu J, Doermann D (2019a) Projection convolutional neural networks for 1-bit CNNs via discrete back propagation. In: Proceedings of the AAAI conference on artificial intelligence, 2019, vol 33, pp 8344–8351

  • Gu J, Zhao J, Jiang X, Zhang B, Liu J, Guo G, Ji R (2019b) Bayesian optimized 1-bit CNNs. In: Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp 4909–4917

  • Guo P, Ma H, Chen R, Li P, Xie S, Wang D (2018) FBNA: a fully binarized neural network accelerator. In: 2018 28th International conference on field programmable logic and applications (FPL), 2018, pp 51–513

  • Han K, Wang Y, Xu Y, Xu C, Wu E, Xu C (2020) Training binary neural networks through learning with noisy supervision. In: International conference on machine learning, 2020. PMLR, pp 4017–4026

  • He X, Mo Z, Cheng K, Xu W, Hu Q, Wang P, Liu Q, Cheng J (2020) ProxyBNN: learning binarized neural networks via proxy matrices. In: Computer vision–ECCV 2020: 16th European conference, Glasgow, UK, 23–28 August 2020, Proceedings, Part III 16. Springer, pp 223–241

  • Helwegen K, Widdicombe J, Geiger L, Liu Z, Cheng KT, Nusselder R (2019) Latent weights do not exist: rethinking binarized neural network optimization. arXiv preprint. arXiv:1906.02107

  • Hou L, Yao Q, Kwok JT (2016) Loss-aware binarization of deep networks. arXiv preprint. arXiv:1611.01600

  • Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint. arXiv:1704.04861

  • Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp 7132–7141

  • Hu Y, Zhai J, Li D, Gong Y, Zhu Y, Liu W, Su L, Jin J (2018) BitFlow: exploiting vector parallelism for binary neural networks on CPU. In: 2018 IEEE international parallel and distributed processing symposium (IPDPS), 2018. IEEE, pp 244–253

  • Jafri R, Ali SA, Arabnia HR, Fatima S (2014) Computer vision-based object recognition for the visually impaired in an indoors environment: a survey. Vis Comput 30(11):1197–1222

    Article  Google Scholar 

  • Jain H, Agarwal A, Shridhar K, Kleyko D (2020). End to end binarized neural networks for text classification. arXiv preprint. arXiv:2010.05223

  • Jiao L, Zhang F, Liu F, Yang S, Li L, Feng Z, Qu R (2019) A survey of deep learning-based object detection. IEEE Access 7:128837–128868

    Article  Google Scholar 

  • Kim D, Choi J (2022) Unsupervised representation learning for binary networks by joint classifier learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp 9747–9756

  • Kim M, Smaragdis P (2016) Bitwise neural networks. arXiv preprint. arXiv:1601.06071

  • Kim D, Singh KP, Choi J (2020a) Learning architectures for binary networks. In: European conference on computer vision, 2020. Springer, pp 575–591

  • Kim H, Kim K, Kim J, Kim JJ (2020b) BinaryDuo: reducing gradient mismatch in binary activation network by coupling binary activations. arXiv preprint. arXiv:2002.06517

  • Kim H, Park J, Lee C, Kim JJ (2020c) Improving accuracy of binary neural networks using unbalanced activation distribution. arXiv preprint. arXiv:2012.00938

  • Krizhevsky A (2009) Learning multiple layers of features from tiny images

  • Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst 25:1097–1105

    Google Scholar 

  • Laydevant J, Ernoult M, Querlioz D, Grollier J (2021) Training dynamical binary neural networks with equilibrium propagation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp 4640–4649

  • Li Z, Ni B, Zhang W, Yang X, Gao W (2017) Performance guaranteed network acceleration via high-order residual quantization. In: Proceedings of the IEEE international conference on computer vision, 2017, pp 2584–2592

  • Li Y, Bu R, Sun M, Wu W, Di X, Chen B (2018a) PointCNN: convolution on x-transformed points. Adv Neural Inf Process Syst 31:820–830

    Google Scholar 

  • Li Y, Zhang H, Xue X, Jiang Y, Shen Q (2018b) Deep learning for remote sensing image classification: a survey. Wiley Interdiscip Rev Data Min Knowl Discov 8(6):e1264

    Article  Google Scholar 

  • Li A, Geng T, Wang T, Herbordt M, Song SL, Barker K (2019a) BSTC: a novel binarized-soft-tensor-core design for accelerating bit-based approximated neural nets. In: Proceedings of the international conference for high performance computing, networking, storage and analysis, 2019, pp 1–30

  • Li R, Wang Y, Liang F, Qin H, Yan J, Fan R (2019b) Fully quantized network for object detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp 2810–2819

  • Li X, Wang W, Hu X, Yang J (2019c) Selective kernel networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp 510–519

  • Li Y, Gong R, Yu F, Dong X, Liu X (2020) DMS: differentiable dimension search for binary neural networks. In: ICLR 2020 NAS workshop, April 2020

  • Li G, Zhang M, Zhang Q, Lin Z (2021) Efficient binary 3D convolutional neural network and hardware accelerator. J Real-Time Image Process 19:1–11

    Google Scholar 

  • Li Y, Pintea SL, van Gemert JC (2022) Equal bits: enforcing equally distributed binary network weights. In: Proceedings of the AAAI conference on artificial intelligence, 2022, vol 36, pp 1491–1499

  • Liang S, Yin S, Liu L, Luk W, Wei S (2018) FP-BNN: binarized neural network on FPGA. Neurocomputing 275:1072–1086

    Article  Google Scholar 

  • Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: European conference on computer vision, 2014. Springer, pp 740–755

  • Lin X, Zhao C, Pan W (2017) Towards accurate binary convolutional neural network. arXiv preprint. arXiv:1711.11294

  • Lin M, Ji R, Xu Z, Zhang B, Wang Y, Wu Y, Huang F, Lin CW (2020) Rotated binary neural network. In: Advances in neural information processing systems, vol 33

  • Lin M, Ji R, Xu Z, Zhang B, Chao F, Lin CW, Shao L (2022) SiMaN: sign-to-magnitude network binarization. In: IEEE transactions on pattern analysis and machine intelligence. https://doi.org/10.48550/arXiv.2102.07981

  • Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: single shot multibox detector. In: European conference on computer vision, 2016. Springer, pp 21–37

  • Liu Z, Wu B, Luo W, Yang X, Liu W, Cheng KT (2018) Bi-real Net: enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: Proceedings of the European conference on computer vision (ECCV), 2018, pp 722–737

  • Liu C, Ding W, Xia X, Hu Y, Zhang B, Liu J, Zhuang B, Guo G (2019a) RBCN: rectified binary convolutional networks for enhancing the performance of 1-bit DCNNs. arXiv preprint. arXiv:1908.07748

  • Liu C, Ding W, Xia X, Zhang B, Gu J, Liu J, Ji R, Doermann D (2019b) Circulant binary convolutional networks: enhancing the performance of 1-bit DCNNs with circulant back propagation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp 2691–2699

  • Liu L, Ouyang W, Wang X, Fieguth P, Chen J, Liu X, Pietikäinen M (2020a) Deep learning for generic object detection: a survey. Int J Comput Vis 128(2):261–318

    Article  MATH  Google Scholar 

  • Liu Z, Luo W, Wu B, Yang X, Liu W, Cheng KT (2020b) Bi-real Net: binarizing deep network towards real-network performance. Int J Comput Vis 128(1):202–219

    Article  Google Scholar 

  • Liu Z, Shen Z, Savvides M, Cheng KT (2020c) ReactNet: towards precise binary neural network with generalized activation functions. In: European conference on computer vision, 2020. Springer, pp 143–159

  • Liu Z, Shen Z, Li S, Helwegen K, Huang D, Cheng KT (2021) How do Adam and training strategies help BNNs optimization? In: International conference on machine learning, 2021. PMLR

  • Liu Z, Oguz B, Pappu A, Xiao L, Yih S, Li M, Krishnamoorthi R, Mehdad Y (2022) BiT: robustly binarized multi-distilled transformer. In: Advances in neural information processing systems, 2022

  • Livochka A, Shekhovtsov A (2021a) Initialization and transfer learning of stochastic binary networks from real-valued ones. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR) workshops, 2021, pp 4660–4668

  • Livochka A, Shekhovtsov A (2021b) Initialization and transfer learning of stochastic binary networks from real-valued ones. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp 4660–4668

  • Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp 3431–3440

  • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  • Martinez B, Yang J, Bulat A, Tzimiropoulos G (2020) Training binary neural networks with real-to-binary convolutions. arXiv preprint. arXiv:2003.11535

  • Mishra A, Nurvitadhi E, Cook JJ, Marr D (2017) WRPN: wide reduced-precision networks. arXiv preprint. arXiv:1709.01134

  • Nakahara H, Fujii T, Sato S (2017) A fully connected layer elimination for a binarizec convolutional neural network on an FPGA. In: 2017 27th International conference on field programmable logic and applications (FPL), 2017, pp 1–4

  • Nath SS, Mishra G, Kar J, Chakraborty S, Dey N (2014) A survey of image classification methods and techniques. In: 2014 International conference on control, instrumentation, communication and computational technologies (ICCICCT), 2014. IEEE, pp 554–557

  • Open neural network exchange (2019). https://github.com/onnx/onnx

  • Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) PyTorch: an imperative style, high-performance deep learning library. arXiv preprint. arXiv:1912.01703

  • Pedersoli F, Tzanetakis G, Tagliasacchi A (2017) Espresso: efficient forward propagation for BCNNs. arXiv preprint. arXiv:1705.07175

  • Penkovsky B, Bocquet M, Hirtzlin T, Klein JO, Nowak E, Vianello E, Portal JM, Querlioz D (2020) In-memory resistive RAM implementation of binarized neural networks for medical applications. In: 2020 Design, automation and test in Europe conference and exhibition (DATE), 2020. IEEE, pp 690–695

  • Pham P, Abraham JA, Chung J (2021) Training multi-bit quantized and binarized networks with a learnable symmetric quantizer. IEEE Access 9:47194–47203

    Article  Google Scholar 

  • Phan H, He Y, Savvides M, Shen Z, et al (2020a) MobiNet: a mobile binary network for image classification. In: Proceedings of the IEEE/CVF winter conference on applications of computer vision, 2020, pp 3453–3462

  • Phan H, Liu Z, Huynh D, Savvides M, Cheng KT, Shen Z (2020b) Binarizing MobileNet via evolution-based searching. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp 13420–13429

  • Pu H, Xu K, Zhang D, Liu L, Liu L, Wang D (2022) TA-BiDet: task-aligned binary object detector. Neurocomputing 511:337–352

    Article  Google Scholar 

  • Qi CR, Su H, Mo K, Guibas LJ (2017a) PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 652–660

  • Qi CR, Yi L, Su H, Guibas LJ (2017b) PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint. arXiv:1706.02413

  • Qian YM, Xiang X (2019) Binary neural networks for speech recognition. Front Inf Technol Electron Eng 20(5):701–715

    Article  Google Scholar 

  • Qiao G, Hu S, Chen T, Rong L, Ning N, Yu Q, Liu Y (2020) STBNN: hardware-friendly spatio-temporal binary neural network with high pattern recognition accuracy. Neurocomputing 409:351–360

    Article  Google Scholar 

  • Qin H, Cai Z, Zhang M, Ding Y, Zhao H, Yi S, Liu X, Su H (2020a) BiPointNet: binary neural network for point clouds. arXiv preprint. arXiv:2010.05501

  • Qin H, Gong R, Liu X, Bai X, Song J, Sebe N (2020b) Binary neural networks: a survey. Pattern Recognit 105:107281

    Article  Google Scholar 

  • Qin H, Gong R, Liu X, Shen M, Wei Z, Yu F, Song J (2020c) Forward and backward information retention for accurate binary neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp 2250–2259

  • Qin H, Gong R, Liu X, Shen M, Wei Z, Yu F, Song J (2020d) Forward and backward information retention for accurate binary neural networks. In: IEEE CVPR, 2020

  • Qin H, Ding Y, Zhang M, Qinghua Y, Liu A, Dang Q, Liu Z, Liu X (2022a) BiBERT: accurate fully binarized BERT. In: International conference on learning representations, 2022

  • Qin H, Ma X, Ding Y, Li X, Zhang Y, Ma Z, Wang J, Luo J, Liu X (2022b) BiFSMNv2: pushing binary neural networks for keyword spotting to real-network performance. In: IEEE transactions on neural networks and learning systems (TNNLS). https://doi.org/10.48550/arXiv.2211.06987

  • Qin H, Ma X, Ding Y, Li X, Zhang Y, Tian Y, Ma Z, Luo J, Liu X (2022c) BiFSMN: binary neural network for keyword spotting. In: IJCAI, 2022: arXiv-2202

  • Qin H, Zhang X, Gong R, Ding Y, Xu Y, Liu X (2022d) Distribution-sensitive information retention for accurate binary neural network. Int J Comput Vis. https://doi.org/10.48550/arXiv.2109.12338

    Article  Google Scholar 

  • Rastegari M, Ordonez V, Redmon J, Farhadi A (2016) XNOR-Net: ImageNet classification using binary convolutional neural networks. In: European conference on computer vision, 2016. Springer, pp 525–542

  • Redfern AJ, Zhu L, Newquist MK (2021) BCNN: a binary CNN with all matrix ops quantized to 1 bit precision. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp 4604–4612

  • Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp 779–788

  • Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115(3):211–252

    Article  MathSciNet  Google Scholar 

  • Sakr C, Choi J, Wang Z, Gopalakrishnan K, Shanbhag N (2018) True gradient-based training of deep binary activated neural networks via continuous binarization. In: 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP), 2018. IEEE, pp 2346–2350

  • Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp 4510–4520

  • Schuldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: Proceedings of the 17th international conference on pattern recognition, 2004. ICPR 2004, vol 3. IEEE, pp 32–36

  • Shang Y, Xu D, Duan B, Zong Z, Nie L, Yan Y (2022) Lipschitz continuity retained binary neural network. In: European conference on computer vision, 2022. Springer, pp 603–619

  • Shantaiya S, Verma K, Mehta K (2013) A survey on approaches of object detection. Int J Comput Appl 65(18)

  • Shen M, Han K, Xu C, Wang Y (2019) Searching for accurate binary neural architectures. In: Proceedings of the IEEE/CVF international conference on computer vision workshops, 2019

  • Shen M, Liu X, Gong R, Han K (2020) Balanced binary neural networks with gated residual. In: ICASSP 2020–2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), 2020. IEEE, pp 4197–4201

  • Shen Z, Liu Z, Qin J, Huang L, Cheng KT, Savvides M (2021) S2-BNN: bridging the gap between self-supervised real and 1-bit neural networks via guided distribution calibration. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp 2165–2174

  • Simons T, Lee DJ (2019) A review of binarized neural networks. Electronics 8(6):661

    Article  Google Scholar 

  • Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint. arXiv:1409.1556

  • Sukanya C, Gokul R, Paul V (2016) A survey on object recognition methods. Int J Sci Eng Comput Technol 6(1):48

    Google Scholar 

  • Sun S, Yin Y, Wang X, Xu D, Wu W, Gu Q (2018) Fast object detection based on binary deep convolution neural networks. CAAI Trans Intell Technol 3(4):191–197

    Article  Google Scholar 

  • Tang W, Hua G, Wang L (2017) How to train a compact binary neural network with high accuracy? In: Proceedings of the AAAI conference on artificial intelligence, 2017, vol 31

  • Tieleman T, Hinton G (2012) Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw Mach Learn 4(2):26–31

    Google Scholar 

  • Tu Z, Chen X, Ren P, Wang Y (2022) AdaBin: improving binary neural networks with adaptive binary sets. In: European conference on computer vision, 2022. Springer, pp 379–395

  • Wang A, Singh A, Michael J, Hill F, Levy O, Bowman SR (2018a) GLUE: a multi-task benchmark and analysis platform for natural language understanding. In: International conference on learning representations, 2018

  • Wang X, Zhang B, Li C, Ji R, Han J, Cao X, Liu J (2018b) Modulated convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), June 2018

  • Wang W, Yang Y, Wang X, Wang W, Li J (2019a) Development of convolutional neural network and its application in image classification: a survey. Opt Eng 58(4):040901

    Article  Google Scholar 

  • Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM (2019b) Dynamic graph CNN for learning on point clouds. ACM Trans Graph 38(5):1–12

    Article  Google Scholar 

  • Wang Z, Lu J, Tao C, Zhou J, Tian Q (2019c) Learning channel-wise interactions for binary convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp 568–577

  • Wang P, He X, Li G, Zhao T, Cheng J (2020a) Sparsity-inducing binarized neural networks. In: Proceedings of the AAAI conference on artificial intelligence, 2020, vol 34, pp 12192–12199

  • Wang Z, Wu Z, Lu J, Zhou J (2020b) BiDet: an efficient binarized object detector. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp 2049–2058

  • Wang E, Davis JJ, Moro D, Zielinski P, Lim JJ, Coelho C, Chatterjee S, Cheung PY, Constantinides GA (2021a) Enabling binary neural network training on the edge. In: Proceedings of the 5th international workshop on embedded and mobile deep learning, 2021, pp 37–38

  • Wang S, Zhang C, Su D, Wang L, Jiang H (2021b) High-precision binary object detector based on a BSF-XNOR convolutional layer. IEEE Access 9:106169–106180. https://doi.org/10.1109/ACCESS.2021.3099702

    Article  Google Scholar 

  • Wang Y, Yang Y, Sun F, Yao A (2021c) Sub-bit neural networks: learning to compress and accelerate binary neural networks. In: Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp 5360–5369

  • Wang Z, Lu J, Wu Z, Zhou J (2021d) Learning efficient binarized object detectors with information compression. IEEE Trans Pattern Anal Mach Intell 44(6):3082–3095

    Article  Google Scholar 

  • Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015) 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp 1912–1920

  • Wu W, Qi Z, Fuxin L (2019) PointConv: deep convolutional networks on 3D point clouds. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp 9621–9630

  • Xiang X, Qian Y, Yu K (2017) Binary deep neural networks for speech recognition. In: INTERSPEECH, 2017, pp 533–537

  • Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp 1492–1500

  • Xu Z, Cheung RC (2019) Accurate and compact convolutional neural networks with trained binarization. arXiv preprint. arXiv:1909.11366

  • Xu Y, Dong X, Li Y, Su H (2019) A main/subsidiary network framework for simplifying binary neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp 7154–7162

  • Xu S, Liu Z, Gong X, Liu C, Mao M, Zhang B (2020) Amplitude suppression and direction activation in networks for 1-bit faster R-CNN. In: Proceedings of the 4th international workshop on embedded and mobile deep learning, EMDL’20, 2020, New York, NY, USA. Association for Computing Machinery, pp 19–24

  • Xu S, Zhao J, Lu J, Zhang B, Han S, Doermann D (2021a) Layer-wise searching for 1-bit detectors. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), 2021, pp 5682–5691

  • Xu Y, Han K, Xu C, Tang Y, Xu C, Wang Y (2021b) Learning frequency domain approximation for binary neural networks. Adv Neural Inf Process Syst 34:25553–25565

    Google Scholar 

  • Xu Z, Lin M, Liu J, Chen J, Shao L, Gao Y, Tian Y, Ji R (2021c) ReCU: reviving the dead weights in binary neural networks. arXiv preprint. arXiv:2103.12369

  • Xu Y, Chen X, Wang Y (2022) BiMLP: compact binary architectures for vision multi-layer perceptrons. arXiv preprint. arXiv:2212.14158

  • Yang H, Fritzsche M, Bartz C, Meinel C (2017) BMXNet: an open-source binary neural network implementation based on MXNet. In: Proceedings of the 25th ACM international conference on multimedia, 2017, pp 1209–1212

  • Yang L, He Z, Fan D (2018) A fully on chip binarized convolutional neural network FPGA implementation with accurate inference. In: Proceedings of the international symposium on low power electronics and design, ISLPED ’18, 2018, New York, NY, USA. Association for Computing Machinery

  • Yang J, Shen X, Xing J, Tian X, Li H, Deng B, Huang J, Hua XS (2019) Quantization networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp 7308–7316

  • Yang Z, Wang Y, Han K, XU C, XU C, Tao D, Xu C (2020) Searching for low-bit weights in quantized neural networks. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H (eds) Advances in neural information processing systems, vol 33. Curran Associates, Inc., pp 4091–4102

    Google Scholar 

  • Yonekawa H, Nakahara H (2017) On-chip memory based binarized convolutional deep neural network applying batch normalization free technique on an FPGA. In: 2017 IEEE international parallel and distributed processing symposium workshops (IPDPSW), 2017, pp 98–105

  • Zagoruyko S, Komodakis N (2016) Wide residual networks. In: British machine vision conference 2016. British Machine Vision Association

  • Zhang D, Yang J, Ye D, Hua G (2018) LQ-Nets: learned quantization for highly accurate and compact deep neural networks. In: Proceedings of the European conference on computer vision (ECCV), 2018, pp 365–382

  • Zhang J, Pan Y, Yao T, Zhao H, Mei T (2019) DABNN: a super fast inference framework for binary neural networks on arm devices. In: Proceedings of the 27th ACM international conference on multimedia, 2019, pp 2272–2275

  • Zhang W, Wu D, Zhou Y, Li B, Wang W, Meng D (2021a) Binary neural network hashing for image retrieval. In: Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval, 2021, pp 1318–1327

  • Zhang Y, Pan J, Liu X, Chen H, Chen D, Zhang Z (2021b) FracBNN: accurate and FPGA-efficient binary neural networks with fractional activations. In: The 2021 ACM/SIGDA international symposium on field-programmable gate arrays, 2021, pp 171–182

  • Zhang J, Su Z, Feng Y, Lu X, Pietikäinen M, Liu L (2022) Dynamic binary neural network by learning channel-wise thresholds. In: ICASSP 2022–2022 IEEE international conference on acoustics, speech and signal processing (ICASSP), 2022. IEEE, pp 1885–1889

  • Zhao R, Song W, Zhang W, Xing T, Lin JH, Srivastava M, Gupta R, Zhang Z (2017) Accelerating binarized convolutional neural networks with software-programmable FPGAs. In: International symposium on field-programmable gate arrays (FPGA), 2017

  • Zhao J, Xu S, Wang R, Zhang B, Guo G, Doermann D, Sun D (2021) Data-adaptive binary neural networks for efficient object detection and recognition. Pattern Recognit Lett 153:239–245

    Article  Google Scholar 

  • Zhou S, Wu Y, Ni Z, Zhou X, Wen H, Zou Y (2016) DoReFa-Net: training low bit width convolutional neural networks with low bit width gradients. CoRR. arXiv:1606.06160

  • Zhou T, Fan DP, Cheng MM, Shen J, Shao L (2021) RGB-D salient object detection: a survey. Comput Vis Media 7:1–33

    Google Scholar 

  • Zhu P, Wen L, Bian X, Ling H, Hu Q (2018) Vision meets drones: a challenge. arXiv preprint. arXiv:1804.07437

  • Zhu S, Dong X, Su H (2019) Binary ensemble neural network: more bits per network or more networks per bit? In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp 4923–4932

  • Zhu B, Al-Ars Z, Hofstee HP (2020) NASB: neural architecture search for binary convolutional neural networks. In: 2020 International joint conference on neural networks (IJCNN), 2020. IEEE, pp 1–8

  • Zhuang B, Shen C, Tan M, Liu L, Reid I (2019) Structured binary neural networks for accurate image classification and semantic segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp 413–422

  • Zhuang B, Shen C, Tan M, Chen P, Liu L, Reid I (2021) Structured binary neural networks for image recognition. https://doi.org/10.48550/arXiv.1909.09934

  • Zou Z, Shi Z, Guo Y, Ye J (2019) Object detection in 20 years: a survey. arXiv preprint. arXiv:1905.05055

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyu Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Agaian, S.S. A comprehensive review of Binary Neural Network. Artif Intell Rev 56, 12949–13013 (2023). https://doi.org/10.1007/s10462-023-10464-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-023-10464-w

Keywords

Navigation