Skip to main content
Log in

Preparation and Evaluation of Silicon Quantum Dots-Bonded Silica Stationary Phase for Reversed-Phase Chromatography

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

In this paper, silicon quantum dots (SiQDs) with green fluorescence are synthesized by solvothermal reaction of 3-(2,3-epoxypropoxy)propyltrimethoxysilane (GPTMS) and ethylenediaminetetraacetic acid (EDTA), and then SiQDs are bonded to the surface of silica to obtain a new nano-on-micro stationary phase (SiO2-SiQDs) for reversed-phase chromatography. The successful preparation of SiO2-SiQDs stationary phase is demonstrated by a variety of characterizations, such as transmission electron microscopy, laser confocal microscopy, elemental analysis and Fourier infrared spectroscopy. In addition, the chromatographic performance of the prepared stationary phase is evaluated and it shows good separation performance for non-polar substances such as alkylbenzene, aniline and polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography. It is also verified that the stationary phase has good methyl selectivity and shape selectivity. More interestingly, the separation of prednisolone and hydrocortisone isomers can also be achieved at a low ratio of organic solvents, indicating that this new stationary phase has a good application prospect in isomer separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within this article and its supplementary materials.

References

  1. Zhang L, Dai Q, Qiao X, Yu C, Qin X, Yan H. Mixed-mode chromatographic stationary phases: recent advancements and its applications for high-performance liquid chromatography. TrAC-Trends Anal Chem. 2016;82:143–63.

    Article  CAS  Google Scholar 

  2. Dogra A, Sharma A, Kumar Mandal U, Kotwal P, Bhatt S, Nandi U. Liquid chromatography based methods for analysis of disease-modifying antirheumatic drugs (DMARDs) in biological matrices. Crit Rev Anal Chem. 2019;49(3):224–42.

    Article  CAS  Google Scholar 

  3. Gülfen M, Canbaz Y, Özdemir A. Simultaneous determination of amoxicillin, lansoprazole, and levofloxacin in pharmaceuticals by HPLC with UV–vis detector. J Anal Test. 2020;4(1):45–53.

    Article  Google Scholar 

  4. Hakami AAH, Wabaidur SM, Ali KM, Abdullah AZ, Rafatullah M, Siddiqui MR. Development of ultra-performance liquid chromatography-mass spectrometry method for simultaneous determination of three cationic dyes in environmental samples. Molecules. 2020;25(19):4546.

    Article  Google Scholar 

  5. Gao S, Wu G, Li X, Chen J, Wu Y, Wang J, Zhang Z. Determination of triazine herbicides in environmental water samples by acetonitrile inorganic salt aqueous two-phase microextraction system. J Anal Test. 2018;2(4):322–31.

    Article  Google Scholar 

  6. Zhang X, Yang Y, Qin P, Han L, Zhu W, Duan S, Lu M, Cai Z. Facile preparation of nano-g-C3N4/UiO-66-NH2 composite as sorbent for high-efficient extraction and preconcentration of food colorants prior to HPLC analysis. Chin Chem Lett. 2022;33(2):903–6.

    Article  CAS  Google Scholar 

  7. Yang J, Yim H, Lee J, Gu J, Lee B, Hwang YH, Ma Y. Simultaneous determination of nine bioactive compounds in Yijin-tang via high-performance liquid chromatography and liquid chromatography-electrospray ionization-mass spectrometry. Integr Med Res. 2016;5(2):140–50.

    Article  CAS  Google Scholar 

  8. Meng L, De L, Yang N, Yan L, Xiao Q. Exploiting styrene-maleic acid copolymer grafting chromatographic stationary phase materials for separation of membrane lipids. Chin Chem Lett. 2022;3:3123–6.

    Google Scholar 

  9. Bai YL, Hong ZD, Zhang TY, Cai BD, Zhang YZ, Feng YQ. A method for simultaneous determination of 14 carbonyl-steroid hormones in human serum by ultra high performance liquid chromatography–tandem mass spectrometry. J Anal Test. 2020;4(1):1–12.

    Article  Google Scholar 

  10. Chong HS, Sim S, Yamaguchi T, Park J, Lee C, Kim M, Lee G, Yun SS, Lim HS, Suh HJ. Simultaneous determination of sodium iron chlorophyllin and sodium copper chlorophyllin in food using high-performance liquid chromatography and ultra-performance liquid chromatography-mass spectrometry. Food Chem. 2019;276:390–6.

    Article  CAS  Google Scholar 

  11. Tijare LK, Nt R, Un M. A review on bioanalytical method development and validation. Asian J Pharm Clin Res. 2016;9(9):6–10.

    Article  Google Scholar 

  12. Shen S, Chang C, Shen C, Xu H, Miao S, Wills S. Quantitative analysis of azodicarbonamide in insulation layers of extruded cables by HPLC–UV detection. J Anal Test. 2021;5:370–8.

    Article  Google Scholar 

  13. Jiang P, Lucy CA. Retentivity, selectivity and thermodynamic behavior of polycyclic aromatic hydrocarbons on charge-transfer and hypercrosslinked stationary phases under conditions of normal phase high performance liquid chromatography. J Chromatogr A. 2016;1437:176–82.

    Article  CAS  Google Scholar 

  14. Guo D, Tang T, Huang S, Zhu Y. Methoxy terminated poly dimethylsiloxane bonded stationary phase for reversed-phase liquid chromatography. J Chromatogr A. 2021;1652: 462348.

    Article  CAS  Google Scholar 

  15. Liu X, Wang Y, Cong H, Shen Y, Yu B. A review of the design of packing materials for ion chromatography. J Chromatogr A. 2021;1653: 462313.

    Article  CAS  Google Scholar 

  16. Francois I, Villiers A, Sandra P. Considerations on the possibilities and limitations of comprehensive normal phase-reversed phase liquid chromatography (NPLC × RPLC). J Sep Sci. 2006;29(4):492–8.

    Article  CAS  Google Scholar 

  17. Mansfield ER, Mansfield DS, Patterson JE, Knotts TA. Effects of chain grafting positions and surface coverage on conformations of model reversed-phase liquid chromatography stationary phases. J Phys Chem C. 2012;116(15):8456–64.

    Article  CAS  Google Scholar 

  18. Liu Z, Quan K, Li H, Chen J, Guan M, Qiu H. Preparation of silica-based superficially porous silica and its application in enantiomer separations: a review. J Anal Test. 2021;5(3):242–57.

    Article  Google Scholar 

  19. Hong G, Diao S, Antaris AL, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev. 2015;115(19):10816–906.

    Article  CAS  Google Scholar 

  20. Speltini A, Merli D, Profumo A. Analytical application of carbon nanotubes, fullerenes and nanodiamonds in nanomaterials-based chromatographic stationary phases: a review. Anal Chim Acta. 2013;783:1–16.

    Article  CAS  Google Scholar 

  21. Chen J, Gong Z, Tang W, Row KH, Qiu H. Carbon dots in sample preparation and chromatographic separation: recent advances and future prospects. TrAC Trends Anal Chem. 2021;134: 116135.

    Article  CAS  Google Scholar 

  22. Liu Q, Shi J, Sun J, Wang T, Zeng L, Jiang G. Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew Chem Int Ed. 2011;50(26):5913–7.

    Article  CAS  Google Scholar 

  23. Chen J, Yuan N, Jiang D, Lei Q, Liu B, Tang W, Row KH, Qiu H. Octadecylamine and glucose-coderived hydrophobic carbon dots-modified porous silica for chromatographic separation. Chin Chem Lett. 2021;32(11):3398–401.

    Article  CAS  Google Scholar 

  24. Jiang D, Chen J, Guan M, Qiu H. Octadecylimidazolium ionic liquids-functionalized carbon dots and their precursor co-immobilized silica as hydrophobic chromatographic stationary phase with enhanced shape selectivity. Talanta. 2021;233: 122513.

    Article  CAS  Google Scholar 

  25. Yuan N, Chen J, Cai T, Li Z, Guan M, Zhao L, Qiu H. Glucose-based carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. J Chromatogr A. 2020;1619: 460930.

    Article  CAS  Google Scholar 

  26. Fu G, Chen J, Qiu H. Deep eutectic solvents-derivated carbon dots-decorated silica stationary phase with enhanced separation selectivity in reversed-phase liquid chromatography. J Chromatogr A. 2022;1681: 463425.

    Article  CAS  Google Scholar 

  27. Song L, Zhang H, Chen J, Li Z, Guan M, Qiu H. Imidazolium ionic liquids-derived carbon dots-modified silica stationary phase for hydrophilic interaction chromatography. Talanta. 2020;209: 120518.

    Article  CAS  Google Scholar 

  28. Saraiva A, Lim WH, Yang CH, Escott CC, Laucht A, Dzurak AS. Materials for silicon quantum dots and their impact on electron spin qubits. Adv Funct Mater. 2021;32:2105488.

    Article  Google Scholar 

  29. Yang J, Gao Y. A dipole-dipole interaction tuning the photoluminescence of silicon quantum dots in a water vapor environment. Nanoscale. 2019;11(4):1790–7.

    Article  CAS  Google Scholar 

  30. Robidillo CJT, Veinot JGC. Functional bio-inorganic hybrids from silicon quantum dots and biological molecules. ACS Appl Mater Interfaces. 2020;12(47):52251–70.

    Article  CAS  Google Scholar 

  31. Han Y, Wang Y, Liu X, Chen J, Qiu H. Green- and red-emitting fluorescent silicon nanoparticles: synthesis, mechanism, and acid phosphatase sensing. ACS Appl Bio Mater. 2022;5(1):295–304.

    Article  CAS  Google Scholar 

  32. Chen Y, Sun L, Liao F, Dang Q, Shao M. Fluorescent-stable and water-soluble two-component-modified silicon quantum dots and their application for bioimaging. J Lumin. 2019;215: 116644.

    Article  CAS  Google Scholar 

  33. Fu M, Fu R, Takada M, Sugimoto H. Silicon quantum dot supraparticles for fluorescence bioimaging. ACS Appl Nano Mater. 2020;3(6):6099–107.

    Article  Google Scholar 

  34. Roy D, Mukhuty A, Fouzder C, Bar N, Chowdhury S, Kundu R, Chowdhury P. Multi-emissive biocompatible silicon quantum dots: synthesis, characterization, intracellular imaging and improvement of two-fold drug efficacy. Dyes Pigments. 2021;86: 109004.

    Article  Google Scholar 

  35. Yi Z, Xiao S, Si W, Fei P, Feng B. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano. 2015;9(6):5958–67.

    Article  Google Scholar 

  36. Das A, Snee PT. Synthetic developments of nontoxic quantum dots. Chem Phys Chem. 2016;17(5):598–617.

    Article  CAS  Google Scholar 

  37. Li X, He Y, Swihart MT. Surface functionalization of siliconnanoparticles roduced by laser-driven pyrolysis of silane followed by HF-HNO3 etching. Langmuir. 2004;20:4720–7.

    Article  CAS  Google Scholar 

  38. Peng X, Long Q, Li H, Zhang Y, Yao S. “Turn on-off” fluorescent sensor for protamine and heparin based on label-free silicon quantum dots coupled with gold nanoparticles. Sens Actuat B Chem. 2015;213:131–8.

    Article  CAS  Google Scholar 

  39. Tilley RD, Yamamoto K. The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Adv Mater. 2006;18(15):2053–6.

    Article  CAS  Google Scholar 

  40. Atkins TM, Thibert A, Larsen DS, Dey S, Browning ND, Kauzlarich SM. Femtosecond ligand/core dynamics of microwave-assisted synthesized silicon quantum dots in aqueous solution. J Am Chem Soc. 2011;133(51):20664–7.

    Article  CAS  Google Scholar 

  41. Mei H, Wang R, Ren W, Zhang Y. The grafting reaction of epoxycyclohexyl polyhedral oligomeric silsesquioxanes with carboxylic methoxypolyethylene glycols and the properties of composite solid polymer electrolytes with the graftomer. J Appl Polym Sci. 2017;134(7):44460.

    Article  Google Scholar 

  42. Wei N, Wei X, Huang H, Guo F, Wang H. One-pot facile synthesis of green-emitting fluorescent silicon quantum dots for the highly selective and sensitive detection of nitrite in food samples. Dyes Pigments. 2021;184: 108848.

    Article  CAS  Google Scholar 

  43. Borges EM, Euerby MR, Collins CH. Comparison of classical chromatographic tests with a chromatographic test applied to stationary phases prepared by thermal immobilization of poly(methyloctylsiloxane) onto silica. Anal Bioanal Chem. 2012;404(10):2985–3002.

    Article  CAS  Google Scholar 

  44. Castilho MB, Gama VS, Santos AL, Faria AM. Polar polymer-immobilized stationary phase for aqueous reversed-phase liquid chromatography. J Liq Chromatogr R T. 2020;44(1–2):25–32.

    Google Scholar 

  45. Finsgar M, Perva-Uzunalic A, Behr H, Ledinek N, Knez Z, Novak Z. An improved reversed-phase high-performance liquid chromatography method for the analysis of related substances of prednisolone in active ingredient. ACS Omega. 2020;5(14):7987–8000.

    Article  CAS  Google Scholar 

  46. Wang Z, Chen J, Sun Q, Peijnenburg WJ. C60-DOM interactions and effects on C60 apparent solubility: a molecular mechanics and density functional theory study. Environ Int. 2011;37(6):1078–82.

    Article  CAS  Google Scholar 

  47. Zhang Z, Xia M, Huang P, Di B, Su M. Preparation and evaluation of a bacitracin-bonded silica stationary phase for hydrophilic interaction liquid chromatography. Micro Chem J. 2021;170: 106661.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (22074154), Longyuan Youth Innovation and Entrepreneurship Talent (Team) Project (E20492SC), Lanzhou talent innovation and Entrepreneurship Project (2021-RC-35), Science and Technology Project of Science and Technology Bureau of Chengguan District in Lanzhou City (2020JSCX0033), Youth Innovation Promotion Association CAS (2021420).

Author information

Authors and Affiliations

Authors

Contributions

DW experiment, software, data curation, investigation, writing—original draft. HL software, discussion. HQ Writing—review & editing, discussion, supervision. JC conceptualization, methodology, investigation, writing—review & editing, discussion, supervision. All authors agreed with the final version of the manuscript.

Corresponding authors

Correspondence to Hongdeng Qiu or Jia Chen.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 384 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Li, H., Qiu, H. et al. Preparation and Evaluation of Silicon Quantum Dots-Bonded Silica Stationary Phase for Reversed-Phase Chromatography. J. Anal. Test. 7, 8–15 (2023). https://doi.org/10.1007/s41664-022-00243-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-022-00243-x

Keywords

Navigation