Skip to main content
Log in

Silica grafted with silanized carbon dots as a nano-on-micro packing material with enhanced hydrophilic selectivity

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon dots derivatized from N-(β-aminoethyl)-γ-aminopropyl-methyldimethoxysilane (AEAPMS) were coated onto silica microparticles. These particles (Sil-CDs) are shown to be an excellent stationary phase for use in hydrophilic interaction chromatography. Analytes including sulfonamides, nucleosides and bases, flavones and amino acids can be well separated on this stationary phase. Compared to a silica stationary phase functionalized with AEAPMS only, the Sil-CDs show enhanced separation performance. The selectivity factors of three nucleosides and bases (1.02–1.09) and four sulfonamides (1.04–1.11) on AEAPMS functionalized silica stationary phase were improved to 1.10–1.20 and 1.13–1.15 respectively on Sil-CDs stationary phase. This is attributed to the higher number of surface functional groups due to the introduction of carbon dots. The successful application of the Sil-CDs stationary phase highlights the potential of carbon dots as a modified material in chromatography.

Schematic presentation of the preparation of silanized carbon dots coated onto silica microparticles. The material represents a new stationary phase for hydrophilic interaction chromatography. It shows improved separation performance compared to a silane-only functionalized silica stationary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mallik AK, Qiu H, Kuwahara Y, Takafuji M, Ihara H (2015) A remarkable enhancement of selectivity towards versatile analytes by a strategically integrated H-bonding site containing phase. Chem Commun 51(75):14243–14246

    Article  CAS  Google Scholar 

  2. Mallik AK, Qiu H, Oishi T, Kuwahara Y, Takafuji M, Ihara H (2015) Design of C18 organic phases with multiple embedded polar groups for Ultraversatile applications with ultrahigh selectivity. Anal Chem 87(13):6614–6621

    Article  CAS  Google Scholar 

  3. Zhang M, Mai W, Zhao L, Guo Y, Qiu H (2015) A polar-embedded C30 stationary phase: preparation and evaluation. J Chromatogr A 1388:133–140

    Article  CAS  Google Scholar 

  4. Qiao L, Shi X, Xu G (2016) Recent advances in development and characterization of stationary phases for hydrophilic interaction chromatography. Trends Anal Chem 81:23–33

    Article  CAS  Google Scholar 

  5. Nguyen HP, Schug KA (2008) The advantages of ESI-MS detection in conjunction with HILIC mode separations: fundamentals and applications. J Sep Sci 31(9):1465–1480

    Article  CAS  Google Scholar 

  6. Alpert AJ (1990) Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J Chromatogr 499(2):177–196

    Article  CAS  Google Scholar 

  7. Guo Z, Lei A, Zhang Y, Xu Q, Xue X, Zhang F, Liang X (2007) "click saccharides": novel separation materials for hydrophilic interaction liquid chromatography. Chem Commun 24:2491–2493

    Article  Google Scholar 

  8. Liang T, Fu Q, Shen A, Wang H, Jin Y, Xin H, Ke Y, Guo Z, Liang X (2015) Preparation and chromatographic evaluation of a newly designed steviol glycoside modified-silica stationary phase in hydrophilic interaction liquid chromatography and reversed phase liquid chromatography. J Chromatogr A 1388:110–118

    Article  CAS  Google Scholar 

  9. Shen A, Guo Z, Yu L, Cao L, Liang X (2011) A novel zwitterionic HILIC stationary phase based on "thiol-ene" click chemistry between cysteine and vinyl silica. Chem Commun 47(15):4550–4552

    Article  CAS  Google Scholar 

  10. Jandera P (2011) Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta 692(1–2):1–25

    Article  CAS  Google Scholar 

  11. Yu D, Shen A, Guo Z, Yan Y, Yan J, Jin G, Liang X (2015) A controlled thiol-initiated surface polymerization strategy for the preparation of hydrophilic polymer stationary phases. Chem Commun 51(79):14778–14780

    Article  CAS  Google Scholar 

  12. Qiu H, Mallik AK, Takafuji M, Jiang S, Ihara H (2012) New poly(ionic liquid)-grafted silica multi-mode stationary phase for anion-exchange/reversed-phase/hydrophilic interaction liquid chromatography. Analyst 137(11):2553–2555

    Article  CAS  Google Scholar 

  13. Behbahani M, Najafi M, Amini MM, Sadeghi O, Bagheri A, Salarian M (2013) Dithizone-modified nanoporous fructose as a novel sorbent for solid-phase extraction of ultra-trace levels of heavy metals. Microchim Acta 180(9–10):911–920

    Article  CAS  Google Scholar 

  14. Behbahani M, Bagheri A, Amini MM, Sadeghi O, Salarian M, Najafi F, Taghizadeh M (2013) Application of multiwalled carbon nanotubes modified by diphenylcarbazide for selective solid phase extraction of ultra traces cd(II) in water samples and food products. Food Chem 141(1):48–53

    Article  CAS  Google Scholar 

  15. Tabani H, Fakhari AR, Shahsavani A, Behbahani M, Salarian M, Bagheri A, Nojavan S (2013) Combination of graphene oxide-based solid phase extraction and electro membrane extraction for the preconcentration of chlorophenoxy acid herbicides in environmental samples. J Chromatogr A 1300:227–235

    Article  CAS  Google Scholar 

  16. Hosseini H, Behbahani M, Mahyari M, Kazerooni H, Bagheri A, Shaabani A (2014) Ordered carbohydrate-derived porous carbons immobilized gold nanoparticles as a new electrode material for electrocatalytical oxidation and determination of nicotinamide adenine dinucleotide. Biosens Bioelectron 59:412–417

    Article  CAS  Google Scholar 

  17. Jiang B, Liang Y, Wu Q, Jiang H, Yang K, Zhang L, Liang Z, Peng X, Zhang Y (2014) New GO-PEI-au-L-Cys ZIC-HILIC composites: synthesis and selective enrichment of glycopeptides. Nano 6(11):5616–5619

    CAS  Google Scholar 

  18. Cai T, Zhang H, Li Z, Rahman AFMM, Qiu H (2016) A new nano-on-micro stationary phase based on nanodiamond bonded on silica for hydrophilic interaction chromatography. RSC Adv 6(39):32757–32760

    Article  CAS  Google Scholar 

  19. Li Y, Xu L, Chen T, Liu X, Xu Z, Zhang H (2012) Carbon nanoparticles from corn stalk soot and its novel application as stationary phase of hydrophilic interaction chromatography and per aqueous liquid chromatography. Anal Chim Acta 726:102–108

    Article  CAS  Google Scholar 

  20. Zhang M, Qiu H (2015) Progress in stationary phases modified with carbonaceous nanomaterials for high-performance liquid chromatography. Trends Anal Chem 65:107–121

    Article  CAS  Google Scholar 

  21. Su Y, Zhang M, Zhou N, Shao M, Chi C, Yuan P, Zhao C (2016) Preparation of fluorescent N, P-doped carbon dots derived from adenosine 5′-monophosphate for use in multicolor bioimaging of adenocarcinomic human alveolar basal epithelial cells. Microchim Acta:1–8

  22. Qu Q, Zhu A, Shao X, Shi G, Tian Y (2012) Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem Commun 48(44):5473–5475

    Article  CAS  Google Scholar 

  23. Liu W, Li C, Ren Y, Sun X, Pan W, Li Y, Wang J, Wang W (2016) Carbon dots: surface engineering and applications. J Mater Chem B 4(35):5772–5788

    Article  CAS  Google Scholar 

  24. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52(14):3953–3957

    Article  CAS  Google Scholar 

  25. Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, Qu M (2016) Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta. doi:10.1007/s00604-016-2043-9

    Google Scholar 

  26. Guo Y, Yang L, Li W, Wang X, Shang Y, Li B (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper (II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta 183(4):1409–1416

    Article  CAS  Google Scholar 

  27. Zhuang Z, Lin H, Zhang X, Qiu F, Yang H (2016) A glassy carbon electrode modified with carbon dots and gold nanoparticles for enhanced electrocatalytic oxidation and detection of nitrite. Microchim Acta 183(10):2807–2814

    Article  CAS  Google Scholar 

  28. Fernando KA, Sahu S, Liu Y, Lewis WK, Guliants EA, Jafariyan A, Wang P, Bunker CE, Sun YP (2015) Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl Mater Inter 7(16):8363–8376

    Article  CAS  Google Scholar 

  29. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2(34):6921

    Article  CAS  Google Scholar 

  30. Zuo P, Lu X, Sun Z, Guo Y, He H (2015) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542

    Article  Google Scholar 

  31. Wang B, Song A, Feng L, Ruan H, Li H, Dong S, Hao J (2015) Tunable amphiphilicity and multifunctional applications of ionic-liquid-modified carbon quantum dots. ACS Appl Mater Inter 7(12):6919–6925

    Article  CAS  Google Scholar 

  32. Gupta A, Chaudhary A, Mehta P, Dwivedi C, Khan S, Verma NC, Nandi CK (2015) Nitrogen-doped, thiol-functionalized carbon dots for ultrasensitive hg(II) detection. Chem Commun 51(53):10750–10753

    Article  CAS  Google Scholar 

  33. Zhang H, Qiao X, Cai T, Chen J, Li Z, Qiu H (2017) Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography. Anal Bioanal Chem 409(9):2401–2410

    Article  CAS  Google Scholar 

  34. Liu X, Zhang N, Bing T, Shangguan D (2014) Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for cu(2+). Anal Chem 86(5):2289–2296

    Article  CAS  Google Scholar 

  35. Wang C, Xu Z, Lin H, Huang Y, Zhang C (2015) Large scale synthesis of Highly stable fluorescent carbon dots using silica spheres as carriers for targeted Bioimaging of cancer cells. Part Part Syst Charact 32(10):944–951

    Article  CAS  Google Scholar 

  36. Xie Z, Wang F, Liu CY (2012) Organic-inorganic hybrid functional carbon dot gel glasses. Adv Mater 24(13):1716–1721

    Article  CAS  Google Scholar 

  37. Wang F, Xie Z, Zhang H, C-y L, Zhang Y (2011) Highly luminescent Organosilane-functionalized carbon dots. Adv Funct Mater 21(6):1027–1031

    Article  CAS  Google Scholar 

  38. Chirita RI, West C, Zubrzycki S, Finaru AL, Elfakir C (2011) Investigations on the chromatographic behaviour of zwitterionic stationary phases used in hydrophilic interaction chromatography. J Chromatogr A 1218(35):5939–5963

    Article  CAS  Google Scholar 

  39. Wang J, Guo Z, Shen A, Yu L, Xiao Y, Xue X, Zhang X, Liang X (2015) Hydrophilic-subtraction model for the characterization and comparison of hydrophilic interaction liquid chromatography columns. J Chromatogr A 1398:29–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. 21475142, 21611140105), CAS President’s International Fellowship Initiative (SL: 191), the funds for Distinguished Young Scientists of Gansu (1506RJDA281) and the top priority program of “One-Three-Five” Strategic Planning of Chinese Academy of Sciences are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongdeng Qiu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, T., Zhang, H., Rahman, A.F.M.M. et al. Silica grafted with silanized carbon dots as a nano-on-micro packing material with enhanced hydrophilic selectivity. Microchim Acta 184, 2629–2636 (2017). https://doi.org/10.1007/s00604-017-2277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2277-1

Keywords

Navigation