Skip to main content
Log in

Machine learning the nuclear mass

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

A Correction to this article was published on 05 November 2021

This article has been updated

Abstract

Background:

The masses of \(\sim\)2500 nuclei have been measured experimentally; however, >7000 isotopes are predicted to exist in the nuclear landscape from H (\(Z=1\)) to Og (\(Z=118\)) based on various theoretical calculations. Exploring the mass of the remaining isotopes is a popular topic in nuclear physics. Machine learning has served as a powerful tool for learning complex representations of big data in many fields.

Purpose:

We use Light Gradient Boosting Machine (LightGBM), which is a highly efficient machine learning algorithm, to predict the masses of unknown nuclei and to explore the nuclear landscape on the neutron-rich side from learning the measured nuclear masses.

Methods:

Several characteristic quantities (e.g., mass number and proton number) are fed into the LightGBM algorithm to mimic the patterns of the residual \(\delta (Z,A)\) between the experimental binding energy and the theoretical one given by the liquid-drop model (LDM), Duflo–Zucker (DZ, also dubbed DZ28) mass model, finite-range droplet model (FRDM, also dubbed FRDM2012), as well as the Weizsäcker–Skyrme (WS4) model to refine these mass models.

Results:

By using the experimental data of 80\(\%\) of known nuclei as the training dataset, the root mean square deviations (RMSDs) between the predicted and the experimental binding energy of the remaining 20% are approximately \(0.234\pm 0.022\), \(0.213\pm 0.018\), \(0.170\pm 0.011\), and \(0.222\pm 0.016\) MeV for the LightGBM-refined LDM, DZ model, WS4 model, and FRDM, respectively. These values are approximately 90%, 65%, 40%, and 60% smaller than those of the corresponding origin mass models. The RMSD for 66 newly measured nuclei that appeared in AME2020 was also significantly improved. The one-neutron and two-neutron separation energies predicted by these refined models are consistent with several theoretical predictions based on various physical models. In addition, the two-neutron separation energies of several newly measured nuclei (e.g., some isotopes of Ca, Ti, Pm, and Sm) predicted with LightGBM-refined mass models are also in good agreement with the latest experimental data.

Conclusions:

LightGBM can be used to refine theoretical nuclear mass models and predict the binding energy of unknown nuclei. Moreover, the correlation between the input characteristic quantities and the output can be interpreted by SHapley additive exPlanations (a popular explainable artificial intelligence tool), which may provide new insights for developing theoretical nuclear mass models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. D. Lunney, J.M. Pearson, C. Thibault, Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75, 1021–1082 (2003). https://doi.org/10.1103/RevModPhys.75.1021

    Article  ADS  Google Scholar 

  2. K. Blaum, High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1–78 (2006). https://doi.org/10.1016/j.physrep.2005.10.011

    Article  ADS  Google Scholar 

  3. F. Wienholtz, D. Beck, K. Blaum et al., Masses of exotic calcium isotopes pin down nuclear forces. Nature 498, 346–349 (2013). https://doi.org/10.1038/nature12431

    Article  ADS  Google Scholar 

  4. K. Blaum, J. Dilling, W. Nörtershäuser, Precision atomic physics techniques for nuclear physics with radioactive beams. Phys. Scr. 2013, 014017 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014017

    Article  Google Scholar 

  5. Z. Niu, H. Liang, B. Sun et al., High precision nuclear mass predictions towards a hundred kilo-electron-volt accuracy. Sci. Bull. 63, 759–764 (2018). https://doi.org/10.1016/j.scib.2018.05.009

    Article  Google Scholar 

  6. M. Wang, Y.H. Zhang, X.H. Zhou, Nuclear mass measurements. Sci. China Phys. Mech. Astron. 50, 052006 (2020). https://doi.org/10.1360/SSPMA-2019-0308

    Article  Google Scholar 

  7. C. Ma, M. Bao, Z.M. Niu et al., New extrapolation method for predicting nuclear masses. Phys. Rev. C 101, 045204 (2020). https://doi.org/10.1103/PhysRevC.101.045204

    Article  ADS  Google Scholar 

  8. M. Wang, W.J. Huang, F.G. Kondev et al., AME 2020 atomic mass evaluation (II) Tables, graphs, and references. Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf

    Article  Google Scholar 

  9. P. Möller, W.D. Myers, H. Sagawa et al., New finite-range droplet mass model and equation-of-state parameters. Phys. Rev. Lett. 108, 052501 (2012). https://doi.org/10.1103/PhysRevLett.108.052501

    Article  ADS  Google Scholar 

  10. P. Möller, J.R. Nix, W.D. Myers et al., Nuclear ground state masses and deformations. Atomic Data Nucl. Data Tabels. 59, 185–381 (1995). https://doi.org/10.1006/adnd.1995.1002

    Article  ADS  Google Scholar 

  11. N. Wang, M. Liu, X. Wu et al., Surface diffuseness correction in global mass formula. Phys. Lett. B 734, 215–219 (2014). https://doi.org/10.1016/j.physletb.2014.05.049

    Article  ADS  Google Scholar 

  12. S. Goriely, N. Chamel, J.M. Pearson, Further explorations of the Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing. Phys. Rev. C 93, 034337 (2016). https://doi.org/10.1103/PhysRevC.93.034337

  13. S. Goriely, N. Chamel, J.M. Pearson, Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: Crossing the 0.6 MeV threshold with microscopically deduced pairing. Phys. Rev. Lett. 102, 152503 (2009). https://doi.org/10.1103/PhysRevLett.102.152503

  14. Y. Aboussir, J.M. Pearson, A.K. Dutta et al., Nuclear mass formula via an approximation to the Hartree-Fock method. Atom. Data Nucl. Data Tabl. 61, 127–176 (1995). https://doi.org/10.1016/S0092-640X(95)90014-4

    Article  ADS  Google Scholar 

  15. L.S. Geng, H. Toki, J. Meng, Masses, deformations, and charge radii: Nuclear ground-state properties in relativistic mean field model. Prog. Theor. Phys. 113, 785–800 (2005). https://doi.org/10.1143/PTP.113.785

    Article  ADS  Google Scholar 

  16. X.W. Xia, Y. Lim, P.W. Zhao et al., The limits of the nuclear landscape explored by the relativistic continuum Hartree-Bogoliubov theory. Atomic Data Nucl. Data Tabels. 121–122, 1–215 (2018). https://doi.org/10.1016/j.adt.2017.09.001

    Article  ADS  Google Scholar 

  17. C. Giuseppe, C. Ignacio, C. Kyle et al., Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019). https://doi.org/10.1103/RevModPhys.91.045002

  18. A. Radovic, M. Williams, D. Rousseau et al., Machine learning at the energy and intensity frontiers of particle physics. Nature 560, 41 (2018). https://doi.org/10.1038/s41586-018-0361-2

    Article  ADS  Google Scholar 

  19. J. Xu, Constraining isovector nuclear interactions with giant dipole resonance and neutron skin in \(^{208}\) Pb from a bayesian approach. Chin. Phys. Lett. 38, 042101 (2021). https://doi.org/10.1088/0256-307X/38/4/042101

  20. H.B. Ren, L. Wang, X. Dai, Machine learning kinetic energy functional for a one-dimensional periodic system. Chin. Phys. Lett. 38, 050701 (2021). https://doi.org/10.1088/0256-307X/38/5/050701

    Article  ADS  Google Scholar 

  21. X.H. Wu, L.H. Guo P.W. Zhao, Nuclear masses in extended kernel ridge regression with odd-even effects. Phys. Lett. B 819, 136387 (2021). https://doi.org/10.1016/j.physletb.2021.136387

  22. S.J. Lei, D. B, Z.Z. Ren et al., Finding short-range parity-time phase-transition points with a neural network. Chin. Phys. Lett. 38, 051101 (2021). https://doi.org/10.1088/0256-307X/38/5/051101

  23. W.J. Rao, Machine learning for many-body localization transition. Chin. Phys. Lett. 37, 080501 (2020). https://doi.org/10.1088/0256-307X/37/8/080501

    Article  ADS  Google Scholar 

  24. H.L. Liu, D.D. Han, P. Ji et al, Reaction rate weighted multilayer nuclear reaction network. Chin. Phys. Lett. 37, 112601 (2020). https://doi.org/10.1088/0256-307X/37/11/112601

    Article  ADS  Google Scholar 

  25. R. Utama, J. Piekarewicz, H.B. Prosper, Nuclear mass predictions for the crustal composition of neutron stars: A bayesian neural network approach. Phys. Rev. C 93, 014311 (2016). https://doi.org/10.1103/PhysRevC.93.014311

    Article  ADS  Google Scholar 

  26. R. Utama, J. Piekarewicz, Refining mass formulas for astrophysical applications: a Bayesian neural network approach. Phys. Rev. C 96, 044308 (2017). https://doi.org/10.1103/PhysRevC.96.044308

    Article  ADS  Google Scholar 

  27. Z.M. Niu, H.Z. Liang, Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects. Phys. Lett. B 778, 48–53 (2018). https://doi.org/10.1016/j.physletb.2018.01.002

    Article  ADS  Google Scholar 

  28. R. Utama, W.C. Chen J. Piekarewicz, Nuclear charge radii: Density functional theory meets Bayesian neural networks. J. Phys. G 43, 114002 (2016). https://doi.org/10.1088/0256-307X/38/5/051101

  29. Z.A. Wang, J.C. Pei, Y. Liu, Bayesian evaluation of incomplete fission yields. Phys. Rev. Lett 123, 122501 (2019). https://doi.org/10.1103/PhysRevLett.123.122501

  30. C.W. Ma, D. Peng, H.L. Wei et al., A Bayesian-Neural-Network prediction for fragment production in proton induced spallation reaction. Chin. Phys. C 44, 124107 (2020). https://doi.org/10.1088/1674-1137/abb657

  31. C.W. Ma, D. Peng, H.L. Wei et al., Isotopic cross-sections in proton-induced spallation reactions based on Bayesian neural network method. Chin. Phys. C 44, 014104 (2020). https://doi.org/10.1088/1674-1137/44/1/014104

    Article  ADS  Google Scholar 

  32. Z.M. Niu, H.Z. Liang, B.H. Sun et al., Predictions of nuclear \(\beta\) -decay half-lives with machine learning and their impact on r-process nucleosynthesis. Phys. Rev. C 99, 064307 (2019). https://doi.org/10.1103/PhysRevC.99.064307

    Article  ADS  Google Scholar 

  33. L.G. Pang, K. Zhou, N. Su et al., An equation-of-state meter of quantum chromodynamics transitions from deep learning. Nat. Commun. 9, 210 (2018). https://doi.org/10.1038/s41467-017-02726-3

    Article  ADS  Google Scholar 

  34. Y.L. Du, K. Zhou, J. Steinheimer et al., Identifying the nature of the QCD transition in relativistic collisions of heavy nuclei with deep learning. Eur. Phys. J. C 80, 516 (2020). https://doi.org/10.1140/epjc/s10052-020-8030-7

    Article  ADS  Google Scholar 

  35. J. Steinheimer, L. Pang, K. Zhou et al., A machine learning study to identify spinodal clumping in high energy nuclear collisions. JHEP 12, 122 (2019). https://doi.org/10.1007/JHEP12(2019)122

    Article  ADS  Google Scholar 

  36. Y.D. Song, R. Wang, Y.G. Ma et al., Determining the temperature in heavy-ion collisions with multiplicity distribution. Phys. Lett. B 814, 136084 (2021). https://doi.org/10.1016/j.physletb.2021.136084

    Article  Google Scholar 

  37. R. Wang, Y.G. Ma, R. Wada et al., Nuclear liquid-gas phase transition with machine learning. Phys. Rev. Res. 2, 043202 (2020). https://doi.org/10.1103/PhysRevResearch.2.043202

    Article  Google Scholar 

  38. F.P. Li, Y.J. Wang, H.L. Lü et al., Application of artificial intelligence in the determination of impact parameters in heavy-ion collisions at intermediate energies. J. Phys. G 47, 115104 (2020). https://doi.org/10.1088/1361-6471/abb1f9

    Article  ADS  Google Scholar 

  39. H.F. Zhang, L.H. Wang, J.P. Yin et al., Performance of the Levenberg–Marquardt neural network approach in nuclear mass prediction. J. Phys. G 44, 045110 (2017). https://doi.org/10.1088/1361-6471/aa5d78

    Article  ADS  Google Scholar 

  40. X.H. Wu, P.W. Zhao, Predicting nuclear masses with the kernel ridge regression. Phys. Rev. C 101, 051301 (2020). https://doi.org/10.1103/PhysRevC.101.051301

    Article  ADS  Google Scholar 

  41. Z.M. Niu, J.Y. Fang, Y.F. Niu, Comparative study of radial basis function and Bayesian neural network approaches in nuclear mass predictions. Phys. Rev. C 100, 054311 (2019). https://doi.org/10.1103/PhysRevC.100.054311

    Article  ADS  Google Scholar 

  42. M. Shelley, A. Pastore, A new mass model for nuclear astrophysics: crossing 200 keV accuracy. arXiv:2102.07497 (2021)

  43. L. Neufcourt, Y. Cao, W. Nazarewicz et al., Bayesian approach to model-based extrapolation of nuclear observables. Phys. Rev. C 98, 034318 (2018). https://doi.org/10.1103/PhysRevC.98.034318

    Article  ADS  Google Scholar 

  44. M. Carnini, A. Pastore, Trees and forests in nuclear physics. J. Phys. G 47, 082001 (2020). https://doi.org/10.1088/1361-6471/ab92e3

    Article  ADS  Google Scholar 

  45. E. Yüksel, D. Soydaner, H. Bahtiyar, Nuclear mass predictions using neural networks: application of the multilayer perceptron. arXiv:2101.12117v1 (2021)

  46. K.A. Gernoth, J.W. Clark, J.S. Prater et al., Neural network models of nuclear systematics. Phys. Lett. B 300, 1–7 (1993). https://doi.org/10.1016/0370-2693(93)90738-4

    Article  ADS  Google Scholar 

  47. S. Athanassopoulos, E. Mavrommatis, K.A. Gernoth et al., Nuclear mass systematics using neural networks. Nucl. Phys. A 743, 222–235 (2004). https://doi.org/10.1016/j.nuclphysa.2004.08.006

    Article  ADS  Google Scholar 

  48. J.W. Clark, H. Li, Application of support vector machines to global prediction of nuclear properties. Int. J. Mod. Phys. B 20, 5015–5029 (2006). https://doi.org/10.1142/S0217979206036053

    Article  ADS  MATH  Google Scholar 

  49. W. Liu, J.L. Lou, Y.L. Ye et al., Experimental study of intruder components in light neutron-rich nuclei via a single-nucleon transfer reaction. Nucl. Sci. Tech. 31, 20 (2020). https://doi.org/10.1007/s41365-020-0731-y

    Article  Google Scholar 

  50. M. Ji, C. Xu, Quantum anti-zeno effect in nuclear \(\beta\) decay. Chin. Phys. Lett. 38, 032301 (2021). https://doi.org/10.1088/0256-307X/38/3/032301

    Article  ADS  Google Scholar 

  51. Y.J. Wang, F.H. Guan, X.Y. Diao et al., CSHINE for studies of HBT correlation in heavy ion reactions. Nucl. Sci. Tech. 32, 4 (2021). https://doi.org/10.1007/s41365-020-00842-2

    Article  Google Scholar 

  52. D.Z. Chen, D.L. Fang, C.L. Bai, Impact of finite-range tensor terms in the Gogny force on the \(\beta\) decay of magic nuclei. Nucl. Sci. Tech. 32, 74 (2021). https://doi.org/10.1007/s41365-021-00908-9

    Article  Google Scholar 

  53. C.J. Jiang, Y. Qiang, D.W. Guan et al., From finite nuclei to neutron stars, the essential role of the high-order density dependence in effective forces. Chin. Phys. Lett. 38, 052101 (2021). https://doi.org/10.1088/0256-307X/38/5/052101

    Article  ADS  Google Scholar 

  54. X. Zhou, M. Wang, Y.H. Zhang et al., Charge resolution in the isochronous mass spectrometry and the mass of \(^{51}\)Co. Nucl. Sci. Tech. 32, 37 (2021). https://doi.org/10.1007/s41365-021-00876-0

    Article  Google Scholar 

  55. W. Nan, B. Guo, C.J. Lin et al., First proof-of-principle experiment with the post-accelerated isotope separator on-line beam at BRIF: measurement of the angular distribution of \(^{23}\)Na + \(^{40}\)Ca elastic scattering. Nucl. Sci. Tech. 32, 53 (2021). https://doi.org/10.1007/s41365-021-00889-9

    Article  Google Scholar 

  56. H. Yu, D.Q. Fang, Y.G. Ma, Investigation of the symmetry energy of nuclear matter using isospin-dependent quantum molecular dynamics. Nucl. Sci. Tech. 31, 61 (2020). https://doi.org/10.1007/s41365-020-00766-x

    Article  Google Scholar 

  57. J. Duflo, A.P. Zuker, Microscopic mass formulae. Phys. Rev. C 52, R23 (1995). https://doi.org/10.1103/PhysRevC.52.R23

    Article  ADS  Google Scholar 

  58. A. Pastore, D. Neill, H. Powell et al., Impact of statistical uncertainties on the composition of the outer crust of a neutron star. Phys. Rev. C 101, 035804 (2020). https://doi.org/10.1103/PhysRevC.101.035804

    Article  ADS  Google Scholar 

  59. N.N. Ma, H.F. Zhang, X.J. Bao et al., Basic characteristics of the nuclear landscape by improved Weizs äcker-Skyrme-type nuclear mass model. Chin. Phys. C 43, 044105 (2019). https://doi.org/10.1088/1674-1137/43/4/044105

    Article  ADS  Google Scholar 

  60. H.C. Yu, M.Q. Lin, M. Bao et al., Empirical formulas for nuclear separation energies. Phys. Rev. C 100, 014314 (2019). https://doi.org/10.1103/PhysRevC.100.014314

    Article  ADS  Google Scholar 

  61. S. Michimasa, M. Kobayashi, Y. Kiyokawa et al., Mapping of a new deformation region around \(^{62}\) Ti. Phys. Rev. Lett. 125, 122501 (2020). https://doi.org/10.1103/PhysRevLett.125.122501

    Article  ADS  Google Scholar 

  62. M. Vilen, J. M. Kelly, A. Kankainen et al., Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP: Reduced neutron pairing and implications for \(r\) -process calculations. Phys. Rev. Lett. 120, 262701 (2018). https://doi.org/10.1103/PhysRevLett.120.262701

    Article  ADS  Google Scholar 

  63. S. Lundberg, S.I. Lee, A unified approach to interpreting model predictions. arXiv:1705.07874 (2017)

  64. P. Möller, A.J. Sierk, T. Ichikawa et al., Nuclear ground-state masses and deformations: FRDM(2012). Atomic Data Nucl. Data Tabels. 109–110, 1–204 (2016). https://doi.org/10.1016/j.adt.2015.10.002

    Article  ADS  Google Scholar 

  65. G.L. Ke, Q. Meng, T. Finley et al., LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Advances in Neural Information Processing Systems 30 (NIPS 2017), pp. 3149–3157

Download references

Acknowledgements

Fruitful discussions with Prof. Jie Meng, Prof. Hong-Fei Zhang, Prof. Yu-Min Zhao, and Dr. Na-Na Ma are greatly appreciated. The authors acknowledge support by computing server C3S2 at the Huzhou University. The mass table for the LightGBM-refined mass models is available in the Supplemental Material.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ze-Peng Gao, Yong-Jia Wang, Hong-Liang Lü, Qing-Feng Li, Cai-Wan Shen and Ling Liu. The first draft of the manuscript was written by Ze-Peng Gao, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The contributions of Hong-Liang Lü are non-Huawei achievements.

Corresponding authors

Correspondence to Yong-Jia Wang or Qing-Feng Li.

Additional information

This work was supported in part by the National Science Foundation of China (Nos. U2032145, 11875125, 12047568, 11790323, 11790325, and 12075085), the National Key Research and Development Program of China (No. 2020YFE0202002), and the “Ten Thousand Talent Program” of Zhejiang Province (No. 2018R52017).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (dat 581 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, ZP., Wang, YJ., Lü, HL. et al. Machine learning the nuclear mass. NUCL SCI TECH 32, 109 (2021). https://doi.org/10.1007/s41365-021-00956-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00956-1

Keywords

Navigation