Skip to main content

Advertisement

Log in

Nuclear mass based on the multi-task learning neural network method

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The global nuclear mass based on the macroscopic–microscopic model was studied by applying a newly designed multi-task learning artificial neural network (MTL-ANN). First, the reported nuclear binding energies of 2095 nuclei \((Z \ge 8,N \ge 8)\) released in the latest Atomic Mass Evaluation AME2020 and the deviations between the fitting result of the liquid drop model (LDM) and data from AME2020 for each nucleus were obtained. To compensate for the deviations and investigate the possible ignored physics in the LDM, the MTL-ANN method was introduced in the model. Compared to the single-task learning (STL) method, this new network has a powerful ability to simultaneously learn multi-nuclear properties, such as the binding energies and single neutron and proton separation energies. Moreover, it is highly effective in reducing the risk of overfitting and achieving better predictions. Consequently, good predictions can be obtained using this nuclear mass model for both the training and validation datasets and for the testing dataset. In detail, the global root mean square (RMS) of the binding energy is effectively reduced from approximately 2.4 MeV of LDM to the current 0.2 MeV, and the RMS of \(S_{\mathrm{n}}\), \(S_{\mathrm{p}}\) can also reach approximately 0.2 MeV. Moreover, compared to STL, for the training and validation sets, 3–9% improvement can be achieved with the binding energy, and 20–30% improvement for \(S_{\mathrm{n}}\), \(S_{\mathrm{p}}\); for the testing sets, the reduction in deviations can even reach 30–40%, which significantly illustrates the advantage of the current MTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.-L. Zhao, X.-J. Bao, H.-F. Zhang, Improved macroscopic microscopic mass formula. Chin. Phys. C 45(7), 074108 (2021). https://doi.org/10.1088/1674-1137/abfaf2

    Article  ADS  Google Scholar 

  2. J.M. Dong, H.F. Zhang, L.J. Wang et al., Density dependence of the symmetry energy probed by \(\beta ^-\) decay energies of odd-A nuclei. Phys. Rev. C 88, 014302 (2013). https://doi.org/10.1103/PhysRevC.88.014302

    Article  ADS  Google Scholar 

  3. R. Kanungo, A new view of nuclear shells. Phys. Scr. T152, 014002 (2013). https://doi.org/10.1088/0031-8949/2013/t152/014002

    Article  ADS  Google Scholar 

  4. H. Schatz, K.E. Rehm, X-ray binaries. Nucl. Phys. A 777, 601–622 (2006). https://doi.org/10.1016/j.nuclphysa.2005.05.200 (Special Issue on Nuclear Astrophysics)

    Article  ADS  Google Scholar 

  5. Z.M. Niu, H.Z. Liang, Nuclear mass predictions based on Bayesian neural network approach with pairing and shell effects. Phys. Lett. B 778, 48–53 (2018). https://doi.org/10.1016/j.physletb.2018.01.002

    Article  ADS  Google Scholar 

  6. W.J. Huang, M. Wang, F.G. Kondev et al., The Ame 2020 atomic mass evaluation [I]. Chin. Phys. C 45(3), 030002 (2021). https://doi.org/10.1088/1674-1137/abddb0

    Article  ADS  Google Scholar 

  7. W.J. Huang, M. Wang, F.G. Kondev et al., The Ame 2020 atomic mass evaluation [II]. Chin. Phys. C 45(3), 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf

    Article  Google Scholar 

  8. S. Goriely, N. Chamel, J.M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient. Phys. Rev. C 88, 024308 (2013). https://doi.org/10.1103/PhysRevC.88.024308

    Article  ADS  Google Scholar 

  9. N. Chamel, S. Goriely, J.M. Pearson, Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IX: Constraint of pairing force to \(^1S_{0}\) neutron-matter gap. Nucl. Phys. A 812(1), 72–98 (2008). https://doi.org/10.1016/j.nuclphysa.2008.08.015

    Article  ADS  Google Scholar 

  10. P.W. Zhao, Z.P. Li, J.M. Yao et al., New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C 82, 054319 (2010). https://doi.org/10.1103/PhysRevC.82.054319

    Article  ADS  Google Scholar 

  11. J.Q. Li, Z.Y. Ma, B.Q. Chen et al., Ground-state and pairing properties of Pr isotopes in relativistic mean-field theory. Phys. Rev. C 65, 064305 (2002). https://doi.org/10.1103/PhysRevC.65.064305

    Article  ADS  Google Scholar 

  12. C. Barbero, J.G. Hirsch, A.E. Mariano, Deformation and shell effects in nuclear mass formulas. Nucl. Phys. A 874, 81–97 (2012). https://doi.org/10.1016/j.nuclphysa.2011.11.005

    Article  ADS  Google Scholar 

  13. N. Wang, M. Liu, X.Z. Wu, Modification of nuclear mass formula by considering isospin effects. Phys. Rev. C 81, 044322 (2010). https://doi.org/10.1103/PhysRevC.81.044322

    Article  ADS  Google Scholar 

  14. N. Wang, Z.Y. Liang, M. Liu et al., Mirror nuclei constraint in nuclear mass formula. Phys. Rev. C 82, 044304 (2010). https://doi.org/10.1103/PhysRevC.82.044304

    Article  ADS  Google Scholar 

  15. P. Möller, W.D. Myers, H. Sagawa et al., New finite-range droplet mass model and equation-of-state parameters. Phys. Rev. Lett. 108, 052501 (2012). https://doi.org/10.1103/PhysRevLett.108.052501

    Article  ADS  Google Scholar 

  16. P. Möller, A.J. Sierk, T. Ichikawa et al., Nuclear ground-state masses and deformations: FRDM (2012). At. Data Nucl. Data Tables 109–110, 1–204 (2016). https://doi.org/10.1016/j.adt.2015.10.002

    Article  ADS  Google Scholar 

  17. J. Duflo, A.P. Zuker, Microscopic mass formulas. Phys. Rev. C 52, R23–R27 (1995). https://doi.org/10.1103/PhysRevC.52.R23

    Article  ADS  Google Scholar 

  18. J. Mendoza-Temis, J.G. Hirsch, A.P. Zuker, The anatomy of the simplest Duflo-Zuker mass formula. Nucl. Phys. A 843(1), 14–36 (2010). https://doi.org/10.1016/j.nuclphysa.2010.05.055

    Article  ADS  Google Scholar 

  19. G. Royer, M. Guilbaud, A. Onillon, Macro-microscopic mass formulae and nuclear mass predictions. Nucl. Phys. A 847(1), 24–41 (2010). https://doi.org/10.1016/j.nuclphysa.2010.06.014

    Article  ADS  Google Scholar 

  20. G. Royer, A. Subercaze, Coefficients of different macroõmicroscopic mass formulae from the AME2012 atomic mass evaluation. Nucl. Phys. A 917, 1–14 (2013). https://doi.org/10.1016/j.nuclphysa.2013.09.003

    Article  ADS  Google Scholar 

  21. W.D. Myers, W.J. Swiatecki, Nuclear properties according to the Thomas-Fermi model. Nucl. Phys. A 601(2), 141–167 (1996). https://doi.org/10.1016/0375-9474(95)00509-9

    Article  ADS  Google Scholar 

  22. H.F. Zhang. Theoretical studies of nuclear mass formula and nuclear spontaneous fission. Lan Zhou Univercity (CNKI, China, 2015) (in Chinese)

  23. V.M. Strutinsky, Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95(2), 420–442 (1967). https://doi.org/10.1016/0375-9474(67)90510-6

    Article  ADS  Google Scholar 

  24. H.F. Zhang, L.H. Wang, J.P. Yin, P.H. Chen, H.F. Zhang, Performance of the Levenberg–Marquardt neural network approach in nuclear mass prediction. J. Phys. G Nucl. Part. Phys. 44(4), 045110 (2017). https://doi.org/10.1088/1361-6471/aa5d78

    Article  ADS  Google Scholar 

  25. A. Bhagwat, Simple nuclear mass formula. Phys. Rev. C (2014). https://doi.org/10.1103/PhysRevC.90.064306

    Article  Google Scholar 

  26. S. Gazula, J.W. Clark, H. Bohr, Learning and prediction of nuclear stability by neural networks. Nucl. Phys. A (1992). https://doi.org/10.1016/0375-9474(92)90191-L

    Article  Google Scholar 

  27. Z.P. Gao, Y.J. Wang, H.L. Lü et al., Machine learning the nuclear mass. Nucl. Sci. Tech. 32, 109 (2021). https://doi.org/10.1007/s41365-021-00956-1

    Article  Google Scholar 

  28. R. Utama, J. Piekarewicz, H.B. Prosper, Nuclear mass predictions for the crustal composition of neutron stars: a Bayesian neural network approach. Phys. Rev. C 93, 014311 (2016). https://doi.org/10.1103/PhysRevC.93.014311

    Article  ADS  Google Scholar 

  29. R. Utama, J. Piekarewicz, Refining mass formulas for astrophysical applications: a Bayesian neural network approach. Phys. Rev. C 96, 044308 (2017). https://doi.org/10.1103/PhysRevC.96.044308

    Article  ADS  Google Scholar 

  30. R. Utama, W.C. Chen, J. Piekarewicz, Nuclear charge radii: density functional theory meets Bayesian neural networks. J. Phys. G 43, 114002 (2016). https://doi.org/10.1088/0954-3899/43/11/114002

    Article  ADS  Google Scholar 

  31. Z.M. Niu, H.Z. Liang, B.H. Sun et al., Predictions of nuclear \(\beta ^-\)decay half-lives with machine learning and their impact on r-process nucleosynthesis. Phys. Rev. C 99, 064307 (2019). https://doi.org/10.1103/PhysRevC.99.064307

    Article  ADS  Google Scholar 

  32. H.F. Zhang, J.M. Dong, N.N. Ma et al., An improved nuclear mass formula with a unified prescription for the shell and pairing corrections. Nucl. Phys. A 929, 38–53 (2014). https://doi.org/10.1016/j.nuclphysa.2014.05.019

    Article  ADS  Google Scholar 

  33. R. Caruana, Multitask learning. Mach. Learn. 28, 41–75 (1997). https://doi.org/10.1023/A:1007379606734

    Article  Google Scholar 

  34. T.X. Sun, Y.F. Shao, X.N. Li, et al. Learning sparse sharing architectures for multiple tasks. Mach. Learn. https://arxiv.org/abs/1911.05034 (2020)

  35. J. Nocedal, Updating quasi-newton matrices with limited storage. Math. Comput. 35, 773–782 (1980). https://doi.org/10.1090/S0025-5718-1980-0572855-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Xing-Chen Ming. The first draft of the manuscript was written by Xing-Chen Ming, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xing-Chen Ming.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 1187050492, 12005303, and 12175170).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, XC., Zhang, HF., Xu, RR. et al. Nuclear mass based on the multi-task learning neural network method. NUCL SCI TECH 33, 48 (2022). https://doi.org/10.1007/s41365-022-01031-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-022-01031-z

Keywords

Navigation