Skip to main content
Log in

Experimental study of intruder components in light neutron-rich nuclei via single-nucleon transfer reaction

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

With the development of radioactive beam facilities, studies concerning the shell evolution of unstable nuclei have recently gained prominence. Intruder components, particularly s-wave intrusion, in the low-lying states of light neutron-rich nuclei near \(N = 8\) are of importance in the study of shell evolution. The use of single-nucleon transfer reactions in inverse kinematics has been a sensitive tool that can be used to quantitatively investigate the single-particle orbital component of selectively populated states. The spin-parity, spectroscopic factor (or single-particle strength), and effective single-particle energy can all be extracted from such reactions. These observables are often useful to explain the nature of shell evolution, and to constrain, check, and test the parameters used in nuclear structure models. In this article, the experimental studies of the intruder components in low-lying states of neutron-rich nuclei of He, Li, Be, B, and C isotopes using various single-nucleon transfer reactions are reviewed. The focus is laid on the precise determination of the intruder s-wave strength in low-lying states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. M.G. Mayer, On closed shells in nuclei. II. Phys. Rev. C 75, 1969 (1949). https://doi.org/10.1103/PhysRev.75.1969

    Article  Google Scholar 

  2. O. Haxel, J. Hans, D. Jensen et al., On the “magic numbers” in nuclear structure. Phys. Rev. C 75, 1766 (1949). https://doi.org/10.1103/PhysRev.75.1766.2

    Article  Google Scholar 

  3. J. Chen, J.L. Lou, Y.L. Ye et al., A new measurement of the intruder configuration in \({}^{12}{{\rm Be}}\). Phys. Lett. B 781, 412–416 (2018). https://doi.org/10.1016/j.physletb.2018.04.016

    Article  Google Scholar 

  4. T. Otsuka, R. Fujimoto, Y. Utsuno et al., Magic numbers in exotic nuclei and spin-isospin properties of the \(NN\) interaction. Phys. Rev. Lett. 87, 082502 (2001). https://doi.org/10.1103/PhysRevLett.87.082502

    Article  Google Scholar 

  5. T. Otsuka, T. Suzuki, R. Fujimoto et al., Evolution of nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005). https://doi.org/10.1103/PhysRevLett.95.232502

    Article  Google Scholar 

  6. T. Otsuka, T. Matsuo, D. Abe, Mean field with tensor force and shell structure of exotic nuclei. Phys. Rev. Lett. 97, 162501 (2006). https://doi.org/10.1103/PhysRevLett.97.162501

    Article  Google Scholar 

  7. T. Otsuka, T. Suzuki, M. Honma et al., Novel features of nuclear forces and shell evolution in exotic nuclei. Phys. Rev. Lett. 104, 012501 (2010). https://doi.org/10.1103/PhysRevLett.104.012501

    Article  Google Scholar 

  8. T. Otsuka, T. Suzuki, J.D. Holt et al., Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 105, 032501 (2010). https://doi.org/10.1103/PhysRevLett.105.032501

    Article  Google Scholar 

  9. A. Ozawa, T. Kobayashi, T. Suzuki et al., New magic number, \(N=16\), near the neutron drip line. Phys. Rev. Lett. 84, 5493 (2000). https://doi.org/10.1103/PhysRevLett.84.5493

    Article  Google Scholar 

  10. R. Kanungo, A new view of nuclear shells. Phys. Scr. T152, 014002 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014002

    Article  Google Scholar 

  11. K.T. Schmitt, K.L. Jones, A. Bey et al., Halo nucleus \({}^{11}{{\rm Be}}\): a spectroscopic study via neutron transfer. Phys. Rev. Lett. 108, 192701 (2012). https://doi.org/10.1103/PhysRevLett.108.192701

    Article  Google Scholar 

  12. T. Aumann, A. Navin, D.P. Balamuth et al., One-neutron knockout from individual single-particle states of \({}^{11}{{\rm Be}}\). Phys. Rev. Lett. 84, 35 (2000). https://doi.org/10.1103/PhysRevLett.84.35

    Article  Google Scholar 

  13. I. Tanihata, H. Savajols, R. Kanungo, Recent experimental progress in nuclear halo structure studies. Prog. Part. Nucl. Phys. 68, 215–313 (2013). https://doi.org/10.1016/j.ppnp.2012.07.001

    Article  Google Scholar 

  14. K. Wimmer, Nucleon transfer reactions with radioactive beams. J. Phys. G 45, 033002 (2018). https://doi.org/10.1088/1361-6471/aaa2bf

    Article  Google Scholar 

  15. A. Obertelli, Nuclear structure from direct reactions with rare isotopes: observables, methods and highlights. Eur. Phys. J. Plus 131, 319 (2016). https://doi.org/10.1140/epjp/i2016-16319-8

    Article  Google Scholar 

  16. B.P. Kay, J.P. Schiffer, S.J. Freeman, Quenching of cross sections in nucleon transfer reactions. Phys. Rev. Lett. 111, 042502 (2013). https://doi.org/10.1103/PhysRevLett.111.042502

    Article  Google Scholar 

  17. W.N. Catford, What can we learn from transfer, and how is best to do it?, in The Euroschool on Exotic Beams, Vol. IV, Chapter 3 (2014). https://doi.org/10.1007/978-3-642-45141-6_3

  18. I.J. Thompson, Coupled reaction channels calculations in nuclear physics. Comput. Phys. Rep. 7, 167–212 (1988). https://doi.org/10.1016/0167-7977(88)90005-6

    Article  Google Scholar 

  19. W.W. Daehnick, J.D. Childs, Z. Vrcelj, Global optical model potential for elastic deuteron scattering from 12 to 90 MeV. Phys. Rev. C 21, 2253 (1980). https://doi.org/10.1103/PhysRevC.21.2253

    Article  Google Scholar 

  20. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231–310 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0

    Article  Google Scholar 

  21. DWUCK. https://www.oecd-nea.org/tools/abstract/detail/nesc9872. Accessed 9 Dec 2019

  22. R.C. Johnson, P.J.R. Soper, Contribution of deuteron breakup channels to deuteron stripping and elastic scattering. Phys. Rev. C 1, 976 (1970). https://doi.org/10.1103/PhysRevC.1.976

    Article  Google Scholar 

  23. R.C. Johnson, P.C. Tandy, An approximate three-body theory of deuteron stripping. Nucl. Phys. A 235, 56–74 (1974). https://doi.org/10.1016/0375-9474(74)90178-X

    Article  Google Scholar 

  24. V.R. Pandharipande, I. Sick, P.K.A. de Witt Huberts, Independent particle motion and correlations in fermion systems. Rev. Mod. Phys. 69, 981 (1997). https://doi.org/10.1103/RevModPhys.69.981

    Article  Google Scholar 

  25. J.P. Schiffer, C.R. Hoffman, B.P. Kay et al., Test of sum rules in nucleon transfer reactions. Phys. Rev. Lett. 108, 022501 (2012). https://doi.org/10.1103/PhysRevLett.108.022501

    Article  Google Scholar 

  26. S.D. Pain, W.N. Catford, N.A. Orr et al., Structure of \({}^{12}{{\rm Be}}\): intruder \(d\)-wave strength at \(N=8\). Phys. Rev. Lett. 96, 032502 (2006). https://doi.org/10.1103/PhysRevLett.96.032502

    Article  Google Scholar 

  27. R. Kanungo, A.T. Gallant, M. Uchida et al., Structure of states in \({}^{12}{{\rm Be}}\) via the \({}^{11}{{\rm Be}}(d, \, p)\) reaction. Phys. Lett. B 682, 391–395 (2010). https://doi.org/10.1016/j.physletb.2009.11.025

    Article  Google Scholar 

  28. M.H. Macfarlane, J.B. French, Stripping reactions and the structure of light and intermediate nuclei. Rev. Mod. Phys. 32, 567 (1960). https://doi.org/10.1103/RevModPhys.32.567

    Article  Google Scholar 

  29. A.H. Wuosmaa, B.B. Back, S. Baker et al., \({}^{15}{{\rm C}}(d, \, p){}^{16}{{\rm C}}\) reaction and exotic behavior in \({}^{16}{{\rm C}}\). Phys. Rev. Lett. 105, 132501 (2010). https://doi.org/10.1103/PhysRevLett.105.132501

    Article  Google Scholar 

  30. S. Bedoor, A.H. Wuosmaa, J.C. Lighthall et al., Structure of \({}^{14}{{\rm B}}\) and the evolution of \(N=9\) single-neutron isotones. Phys. Rev. C 88, 011304(R) (2013). https://doi.org/10.1103/PhysRevC.88.011304

    Article  Google Scholar 

  31. C.R. Hoffman, B.B. Back, B.P. Kay et al., Experimental study of the \({}^{19}{{\rm O}}(d, \, p){}^{20}{{\rm O}}\) reaction in inverse kinematics. Phys. Rev. C 85, 054318 (2012). https://doi.org/10.1103/PhysRevC.85.054318

    Article  Google Scholar 

  32. J. Chen, K. Auranen, M.L. Avila et al., Experimental study of the low-lying negative-parity states in \({}^{11}{{\rm Be}}\) using the \({}^{12}{{\rm B}}(d, \, {}^{3}{{\rm He}}){}^{11}{{\rm Be}}\) reaction. Phys. Rev. C 100, 064314 (2019). https://doi.org/10.1103/PhysRevC.100.064314

    Article  Google Scholar 

  33. M. Baranger, A definition of the single-nucleon potential. Nucl. Phys. A 149, 225–240 (1970). https://doi.org/10.1016/0375-9474(70)90692-5

    Article  Google Scholar 

  34. R.J. Peterson, H.C. Bhang, J.J. Hamill et al., The \({}^{14}{{\rm C}}(\alpha, \, {\alpha }^{\prime }){}^{14}{{\rm C}}\) and \({}^{13}{{\rm C}}(d, \, p){}^{14}{{\rm C}}\) reactions. Nucl. Phys. A 425, 469–492 (1984). https://doi.org/10.1016/0375-9474(84)90020-4

    Article  Google Scholar 

  35. S. Agostinelli, J. Allison, K. Amako et al., Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  36. E. Pollacco, D. Beaumel, P. Roussel-Chomaz et al., MUST2: a new generation array for direct reaction studies. Eur. Phys. J. A 25(s01), 287–288 (2005). https://doi.org/10.1140/epjad/i2005-06-162-5

    Article  Google Scholar 

  37. M. Labiche, W.N. Catford, R.C. Lemmon et al., TIARA: a large solid angle silicon array for direct reaction studies with radioactive beams. Nucl. Instrum. Methods Phys. Res. A 614, 439–448 (2010). https://doi.org/10.1016/j.nima.2010.01.009

    Article  Google Scholar 

  38. MUST2 website. http://must2.cea.fr/index.php?id=5&ref=1. Accessed 14 Nov 2019

  39. T. Al Kalanee, J. Gibelin, P. Roussel-Chomaz et al., Structure of unbound neutron-rich \({}^{9}{{\rm He}}\) studied using single-neutron transfer. Phys. Rev. C 88, 034301 (2013). https://doi.org/10.1103/PhysRevC.88.034301

    Article  Google Scholar 

  40. A. Matta, D. Beaumel, H. Otsu et al., New findings on structure and production of \({}^{10}{{\rm He}}\) from \({}^{11}{{\rm Li}}\) with the (\({d}\),\({}^{3}{{\rm He}}\)) reaction. Phys. Rev. C 92, 041302(R) (2015). https://doi.org/10.1103/PhysRevC.92.041302

    Article  Google Scholar 

  41. F. Flavigny, A. Gillibert, L. Nalpas et al., Limited asymmetry dependence of correlations from single nucleon transfer. Phys. Rev. Lett. 110, 122503 (2013). https://doi.org/10.1103/PhysRevLett.110.122503

    Article  Google Scholar 

  42. B. Fernandez-Dominguez, J.S. Thomas, W.N. Catford et al., Emergence of the N=16 shell gap in \({}^{21}{{\rm O}}\). Phys. Rev. C 84, 011301(R) (2011). https://doi.org/10.1103/PhysRevC.84.011301

    Article  Google Scholar 

  43. S. Giron, F. Hammache, N. de Séréville et al., Spectroscopy of \({}^{61}{{\rm Fe}}\) via the neutron transfer reaction \({}^{2}{{\rm H}}({}^{60}{{\rm Fe}}, \, {p}){}^{61}{{\rm Fe}^{*}}\). Phys. Rev. C 95, 035806 (2017). https://doi.org/10.1103/PhysRevC.95.035806

    Article  Google Scholar 

  44. G. Burgunder, O. Sorlin, F. Nowacki et al., Experimental study of the two-body spin-orbit force in nuclei. Phys. Rev. Lett. 112, 042502 (2014). https://doi.org/10.1103/PhysRevLett.112.042502

    Article  Google Scholar 

  45. J. Diriken, N. Patronis, A.N. Andreyev et al., Study of the deformation-driving \({\nu }{d_{5/2}}\) orbital in \({}^{67}_{28}{{\rm Ni}}_{39}\) using one-neutron transfer reactions. Phys. Lett. B 736, 533–538 (2014). https://doi.org/10.1016/j.physletb.2014.08.004

    Article  Google Scholar 

  46. W.N. Catford, C.N. Timis, R.C. Lemmon et al., Migration of nuclear shell gaps studied in the \({d}({}^{24}{{\rm Ne}}\), \({p\gamma }){}^{24}{{\rm Ne}}\) reaction. Phys. Rev. Lett. 104, 192501 (2010). https://doi.org/10.1103/PhysRevLett.104.192501

    Article  Google Scholar 

  47. F. Delaunay, B. Fernández-Domínguez, N.L. Achouri, et al., Single-particle structure of \({}^{17}{{\rm C}}\) studied with the \({}^{16}{{\rm C}}(d, \, p)\) transfer reaction, in 20th Colloque GANIL, Amboise, 15–17 Oct 2017 (2017)

  48. Th Kroll, V. Bildstein, K. Wimmer et al., Transfer reactions on neutron-rich nuclei at REX-ISOLDE. AIP Conf. Proc. 1165, 363 (2009). https://doi.org/10.1063/1.3232117

    Article  Google Scholar 

  49. R. Orlandi, D. Mucher, R. Raabe et al., Single-neutron orbits near \({}^{78}{{\rm Ni}}\): spectroscopy of the \(N=49\) isotope \({}^{79}{{\rm Zn}}\). Phys. Lett. B 740, 298–302 (2015). https://doi.org/10.1016/j.physletb.2014.12.006

    Article  Google Scholar 

  50. V. Bildstein, R. Gernhäuser, T. Kröll et al., T-REX: a new setup for transfer experiments at REX-ISOLDE. Eur. Phys. J. A 48, 85 (2012). https://doi.org/10.1140/epja/i2012-12085-6

    Article  Google Scholar 

  51. J. Eberth, G. Pascovici, H.G. Thomas et al., MINIBALL A Ge detector array for radioactive ion beam facilities. Prog. Part. Nucl. Phys. 46, 389–398 (2001). https://doi.org/10.1016/S0146-6410(01)00145-4

    Article  Google Scholar 

  52. N. Warr, J. Van de Walle, M. Albers et al., The miniball spectrometer. Eur. Phys. J. A 49, 40 (2013). https://doi.org/10.1140/epja/i2013-13040-9

    Article  Google Scholar 

  53. S.D. Pain, J.A. Cizewski, R. Hatarik et al., Development of a high solid-angle silicon detector array for measurement of transfer reactions in inverse kinematics. Nucl. Instrum. Methods Phys. Res. B 261, 11223–1125 (2007). https://doi.org/10.1016/j.nimb.2007.04.289

    Article  Google Scholar 

  54. D.W. Bardayan, S. Ahn, J.C. Blackmon et al., Construction and commissioning of the SuperORRUBA detector. Nucl. Instrum. Methods Phys. Res. A 711, 160–165 (1999). https://doi.org/10.1016/j.nima.2013.01.035

    Article  Google Scholar 

  55. J. Belarge, S.A. Kuvin, L.T. Baby et al., Experimental investigation of the \(^{19}\text{ Ne }(p, \, \gamma )^{20}\text{ Na }\) reaction rate and implications for breakout from the hot CNO cycle. Phys. Rev. Lett. 117, 182701 (2016). https://doi.org/10.1103/PhysRevLett.117.182701

    Article  Google Scholar 

  56. K.T. Schmitt, K.L. Jones, S. Ahn et al., Reactions of a \({}^{10}{{\rm Be}}\) beam on proton and deuteron targets. Phys. Rev. C 88, 064612 (2013). https://doi.org/10.1103/PhysRevC.88.064612

    Article  Google Scholar 

  57. I-Yang LEE, The GAMMASPHERE. Nucl. Phys. A 520, c641–c655 (1990). https://doi.org/10.1016/0375-9474(90)91181-P

    Article  Google Scholar 

  58. S. Paschalis, I.Y. Lee, A.O. Macchiavelli et al., The performance of the gamma-ray energy tracking in-beam nuclear array GRETINA. Nucl. Instrum. Methods Phys. Res. A 709, 44–55 (2013). https://doi.org/10.1016/j.nima.2013.01.009

    Article  Google Scholar 

  59. M.S. Wallace, M.A. Famiano, M.-J. van Goethem et al., The high resolution array (HiRA) for rare isotope beam experiments. Nucl. Instrum. Methods Phys. Res. A 583, 302–312 (2007). https://doi.org/10.1016/j.nima.2007.08.248

    Article  Google Scholar 

  60. B. Davin, R.T. de Souza, R. Yanez et al., LASSA: a large area silicon strip array for isotopic identification of charged particles. Nucl. Instrum. Methods Phys. Res. A 473, 302–318 (2001). https://doi.org/10.1016/S0168-9002(01)00295-9

    Article  Google Scholar 

  61. J. Lee, M.B. Tsang, D. Bazin et al., Neutron-proton asymmetry dependence of spectroscopic factors in Ar isotopes. Phys. Rev. Lett. 104, 112701 (2010). https://doi.org/10.1103/PhysRevLett.104.112701

    Article  Google Scholar 

  62. A. Sanetullaev, M.B. Tsang, W.G. Lynch et al., Neutron spectroscopic factors of \({}^{55}{{\rm Ni}}\) hole-states from (\(p, \, d\))transfer reactions. Phys. Lett. B 736, 137–141 (2014). https://doi.org/10.1016/j.physletb.2014.07.003

    Article  Google Scholar 

  63. C.Aa Diget, S.P. Fox, A. Smith et al., SHARC: silicon highly-segmented array for reactions and coulex used in conjunction with the TIGRESS \({\gamma }\)-ray spectrometer. J. Instrum. 6, P02005 (2011). https://doi.org/10.1088/1748-0221/6/02/P02005

    Article  Google Scholar 

  64. M.A. Schumaker, G. Hackman, C.J. Pearson et al., Measured and simulated performance of Compton-suppressed TIGRESS HPGe clover detectors. Nucl. Instrum. Methods Phys. Res. A 570, 437–445 (2007). https://doi.org/10.1016/j.nima.2006.10.185

    Article  Google Scholar 

  65. R. Kanungo, IRIS: the ISAC charged particle reaction spectroscopy facility for reaccelerated high-energy ISOL beams. Hyperfine Interact 225, 235–240 (2015). https://doi.org/10.1007/s10751-013-0904-8

    Article  Google Scholar 

  66. J. Manfredi, J. Lee, W.G. Lynch et al., On determining dead layer and detector thicknesses for a position-sensitive silicon detector. Nucl. Instrum. Methods Phys. Res. A 888, 177–183 (2018). https://doi.org/10.1016/j.nima.2017.12.082

    Article  Google Scholar 

  67. Z. Elekes, Zs Dombrádi, N. Aoi, Spectroscopic study of neutron shell closures via nucleon transfer in the near-dripline nucleus \({}^{23}{{\rm O}}\). Phys. Rev. Lett. 98, 102502 (2007). https://doi.org/10.1103/PhysRevLett.98.102502

    Article  Google Scholar 

  68. Z. Elekes, Zs Dombrádi, N. Aoi et al., Search for neutron decoupling in \({}^{22}{{\rm O}}\) via the (\(d, \, d^{\prime }\gamma\)) reaction. Phys. Rev. C 74, 017306 (2006). https://doi.org/10.1103/PhysRevC.74.017306

    Article  Google Scholar 

  69. S. Takeuchi, T. Motobayashi, Y. Togano et al., DALI2: a NaI(Tl) detector array for measurements of \({\gamma }\) rays from fast nuclei. Nucl. Instrum. Methods Phys. Res. A 763, 596–603 (2014). https://doi.org/10.1016/j.nima.2014.06.087

    Article  Google Scholar 

  70. T. Shimoda, H. Miyatake, S. Morinobu, Design study of the secondary-beam line at RCNP. Nucl. Instrum. Methods Phys. Res. Sect. B 70, 320–330 (1992). https://doi.org/10.1016/0168-583X(92)95948-Q

    Article  Google Scholar 

  71. S. Beceiro-Novo, T. Ahn, D. Bazin et al., Active targets for the study of nuclei far from stability. Prog. Part. Nucl. Phys. 84, 124–165 (2015). https://doi.org/10.1016/j.ppnp.2015.06.003

    Article  Google Scholar 

  72. C.E. Demonchy, M. Caamano, H. Wang et al., MAYA: an active-target detector for binary reactions with exotic. Nucl. Instrum. Methods Phys. Res. A 583, 341–349 (2007). https://doi.org/10.1016/j.nima.2007.09.022

    Article  Google Scholar 

  73. C. Monrozeau, E. Khan, Y. Blumenfeld et al., First measurement of the giant monopole and quadrupole resonances in a short-lived nucleus: \({}^{56}{{\rm Ni}}\). Phys. Rev. Lett. 100, 042501 (2008). https://doi.org/10.1103/PhysRevLett.100.042501

    Article  Google Scholar 

  74. S. Bagchi, J. Gibelin, M.N. Harakeh et al., Observation of isoscalar multipole strengths in exotic doubly-magic \({}^{56}{{\rm Ni}}\) in inelastic \({\alpha }\) scattering in inverse kinematics. Phys. Lett. B 751, 371–375 (2015). https://doi.org/10.1016/j.physletb.2015.10.060

    Article  Google Scholar 

  75. M. Vandebrouck, J. Gibelin, E. Khan et al., Measurement of the isoscalar monopole response in the neutron-rich nucleus \({}^{68}{{\rm Ni}}\). Phys. Rev. Lett. 113, 032504 (2014). https://doi.org/10.1103/PhysRevLett.113.032504

    Article  Google Scholar 

  76. M. Vandebrouck, J. Gibelin, E. Khan et al., Isoscalar response of \({}^{68}{{\rm Ni}}\) to \({\alpha }\)-particle and deuteron probes. Phys. Rev. C 92, 024316 (2015). https://doi.org/10.1103/PhysRevC.92.024316

    Article  Google Scholar 

  77. J. Giovinazzo, J. Pibernat, T. Goigoux et al., Metal-core pad-plane development for ACTAR TPC. Nucl. Instrum. Methods Phys. Res. A 892, 114–121 (2018). https://doi.org/10.1016/j.nima.2018.03.007

    Article  Google Scholar 

  78. B. Mauss, P. Morfouace, T. Roger et al., Commissioning of the ACtive TARget and time projection chamber (ACTAR TPC). Nucl. Instrum. Methods Phys. Res. A 940, 498–504 (2019). https://doi.org/10.1016/j.nima.2019.06.067

    Article  Google Scholar 

  79. D. Bazin, J. Bradt, Y. Ayyad et al., The active target time projection chamber at NSCL. EPJ Web Conf. 163, 00004 (2017). https://doi.org/10.1051/epjconf/201716300004

    Article  Google Scholar 

  80. J. Bradt, D. Bazin, F. Abu-Nimeh et al., Commissioning of the active-target time projection chamber. Nuclear Instrum. Methods Phys. Res. A 875, 65–79 (2017). https://doi.org/10.1016/j.nima.2017.09.013

    Article  Google Scholar 

  81. D. Suzuki, M. Ford, D. Bazin et al., Prototype AT-TPC: toward a new generation active target time projection chamber for radioactive beam experiments. Nucl. Instrum. Methods Phys. Res. A 691, 39–54 (2012). https://doi.org/10.1016/j.nima.2012.06.050

    Article  Google Scholar 

  82. T. Furuno, T. Kawabata, H.J. Ong et al., Performance test of the MAIKo active target. Nucl. Instrum. Methods Phys. Res. A 908, 215–224 (2018). https://doi.org/10.1016/j.nima.2018.08.042

    Article  Google Scholar 

  83. T. Furuno, T. Kawabata, S. Adachi et al., Signature of \(Z=6\) subshell closure in \({}^{10}{{\rm C}}\) from the \({}^{10}{{\rm C}}({\alpha }, \, {\alpha }^{\prime })\) measurement with the MAIKo active target. Phys. Rev. C 100, 054322 (2019). https://doi.org/10.1103/PhysRevC.100.054322

    Article  Google Scholar 

  84. J.Y. Xu, Q.T. Li, Y.L. Ye et al., Performance of a small AT-TPC prototype. Nucl. Sci. Tech. 29, 97 (2018). https://doi.org/10.1007/s41365-018-0437-6

    Article  Google Scholar 

  85. W. Huang, F. Lu, H. Li et al., Laser test of the prototype of CEE time projection chamber. Nucl. Sci. Tech. 29, 41 (2018). https://doi.org/10.1007/s41365-018-0382-4

    Article  Google Scholar 

  86. A.H. Wuosmaa, J.P. Schiffer, B.B. Back et al., A solenoidal spectrometer for reactions in inverse kinematics. Nucl. Instrum. Methods Phys. Res. A 580, 1290–1300 (2007). https://doi.org/10.1016/j.nima.2007.07.029

    Article  Google Scholar 

  87. A.H. Wuosmaa, T. Al Tahtamouni, J.P. Schiffer et al., A solenoidal transport device for transfer reactions in inverse kinematics. Nucl. Phys. A 746, 267c–271c (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.039

    Article  Google Scholar 

  88. D. Santiago-Gonzalez, K. Auranen, M.L. Avila et al., Probing the single-particle character of rotational states in \({}^{19}{{\rm F}}\) using a short-lived isomeric beam. Phys. Rev. Lett. 120, 122503 (2014). https://doi.org/10.1103/PhysRevLett.120.122503

    Article  Google Scholar 

  89. S. Almaraz-Calderon, K.E. Rehm, N. Gerken et al., Study of the \({}^{26}{{\rm Al}}^{m}(d, \, p){}^{27}{{\rm Al}}\) reaction and the influence of the \({}^{26}{{\rm Al}} \, 0^{+}\) isomer on the destruction of \({}^{26}{{\rm Al}}\) in the galaxy. Phys. Rev. Lett. 119, 072701 (2014). https://doi.org/10.1103/PhysRevLett.119.072701

    Article  Google Scholar 

  90. B.B. Back, S.I. Baker, B.A. Brown et al., First experiment with HELIOS: the structure of \({}^{13}{{\rm B}}\). Phys. Rev. Lett. 104, 132501 (2010). https://doi.org/10.1103/PhysRevLett.104.132501

    Article  Google Scholar 

  91. I. Tanihata, H. Hamagaki, O. Hashimoto et al., Measurements of interaction cross sections and nuclear radii in the light \(p\)-shell region. Phys. Rev. Lett. 55, 2676 (1985). https://doi.org/10.1103/PhysRevLett.55.2676

    Article  Google Scholar 

  92. D. Bazin, W. Benenson, B.A. Brown et al., Probing the halo structure of \({}^{19,17,15}{{\rm C}}\) and \({}^{14}{{\rm B}}\). Phys. Rev. C 57, 2156 (1998). https://doi.org/10.1103/PhysRevC.57.2156

    Article  Google Scholar 

  93. E. Sauvan, F. Carstoiu, N.A. Orr et al., One-neutron removal reactions on light neutron-rich nuclei. Phys. Rev. C 69, 044603 (2004). https://doi.org/10.1103/PhysRevC.69.044603

    Article  Google Scholar 

  94. V. Guimaraes, J.J. Kolata, D. Bazin et al., Spectroscopy of \({}^{13,14}{{\rm B}}\) via the one-neutron knockout reaction. Phys. Rev. C 61, 064609 (2000). https://doi.org/10.1103/PhysRevC.61.064609

    Article  Google Scholar 

  95. S. Bedoor, A.H. Wuosmaa, M. Albers et al., Structure of \({}^{14}{{\rm C}}\) and \({}^{14}{{\rm B}}\) from the \({}^{14,15}{{\rm C}}(d, \, {}^{3}{{\rm He}}) {}^{13,14}{{\rm B}}\) reactions. Phys. Rev. C 93, 044323 (2016). https://doi.org/10.1103/PhysRevC.93.044323

    Article  Google Scholar 

  96. M. Labiche, N.A. Orr, F.M. Marqués et al., Halo structure of \({}^{14}{{\rm Be}}\). Phys. Rev. Lett. 86, 600 (2001). https://doi.org/10.1103/PhysRevLett.86.600

    Article  Google Scholar 

  97. T. Kobayashi, O. Yamakawa, K. Omata et al., Projectile fragmentation of the extremely neutron-rich nucleus \({}^{11}{{\rm Li}}\) at 0.79 GeV/nucleon. Phys. Rev. Lett. 60, 2599 (1988). https://doi.org/10.1103/PhysRevLett.60.2599

    Article  Google Scholar 

  98. T. Myo, K. Kato, H. Toki et al., Roles of tensor and pairing correlations on halo formation in \({}^{11}{{\rm Li}}\). Phys. Rev. C 76, 024305 (2007). https://doi.org/10.1103/PhysRevC.76.024305

    Article  Google Scholar 

  99. I. Tanihata, M. Alcorta, D. Bandyopadhyay et al., Measurement of the two-halo neutron transfer reaction \({}^{1}{{\rm H}}({}^{11}{{\rm Li}}, \, {}^{9}{{\rm Li}}){}^{3}{{\rm H}}\) at \(3A\) MeV. Phys. Rev. Lett. 100, 192502 (2008). https://doi.org/10.1103/PhysRevLett.100.192502

    Article  Google Scholar 

  100. H.Y. Lee, J.P. Greene, C.L. Jiang et al., Experimental study of the \({}^{11,12}{{\rm B}}(n, {\gamma })\) reactions and their influence on \(r\)-process nucleosynthesis of light elements. Phys. Rev. C 81, 015802 (2010). https://doi.org/10.1103/PhysRevC.81.015802

    Article  Google Scholar 

  101. J.S. Winfield, S. Fortier, W.N. Catford et al., Structure of \({\rm {Be}^{11}}\) from the (\(p, \, d\)) reaction in inverse kinematics. J. Phys. G Nucl. Part. Phys. 25, 755–757 (1999). https://doi.org/10.1088/0954-3899/25/4/029

    Article  Google Scholar 

  102. A. Lemasson, A. Navin, N. Keeley et al., Reactions with the double-Borromean nucleus \({}^{8}{{\rm He}}\). Phys. Rev. C 82, 044617 (2010). https://doi.org/10.1103/PhysRevC.82.044617

    Article  Google Scholar 

  103. N. Keeley, F. Skaza, V. Lapoux et al., Probing the \({}^{8}{{\rm He}}\) ground state via the \({}^{8}{{\rm He}}(p, \, t) {}^{6}{{\rm He}}\) reaction. Phys. Lett. B 646, 222–226 (2007). https://doi.org/10.1016/j.physletb.2007.01.035

    Article  Google Scholar 

  104. P. Mueller, I.A. Sulai, A.C.C. Villari et al., Nuclear charge radius of \({}^{8}{{\rm He}}\). Phys. Rev. Lett. 99, 252501 (2007). https://doi.org/10.1103/PhysRevLett.99.252501

    Article  Google Scholar 

  105. A. Lemasson, A. Shrivastava, A. Navin et al., Modern rutherford experiment: tunneling of the most neutron-rich nucleus. Phys. Rev. Lett. 103, 232701 (2009). https://doi.org/10.1103/PhysRevLett.103.232701

    Article  Google Scholar 

  106. A. Lemasson, A. Navin, M. Rejmund et al., Pair and single neutron transfer with Borromean \({}^{8}{{\rm He}}\). Phys. Lett. B 697, 454–458 (2011). https://doi.org/10.1016/j.physletb.2011.02.038

    Article  Google Scholar 

  107. M.V. Zhukov, A.A. Korsheninnikov, M.H. Smedberg, Simplified \({\alpha }+4n\) model for the \({}^{8}{{\rm He}}\) nucleus. Phys. Rev. C 50, R1(R) (1994). https://doi.org/10.1103/PhysRevC.50.R1

    Article  Google Scholar 

  108. K. Hagino, N. Takahashi, H. Sagawa, Strong dineutron correlation in \({}^{8}{{\rm He}}\) and \({}^{18}{{\rm C}}\). Phys. Rev. C 77, 054317 (2008). https://doi.org/10.1103/PhysRevC.77.054317

    Article  Google Scholar 

  109. Y. Kanada-En’yo, Dineutron structure in \({}^{8}{{\rm He}}\). Phys. Rev. C 76, 044323 (2007). https://doi.org/10.1103/PhysRevC.76.044323

    Article  Google Scholar 

  110. S. Aoyama, N. Itagaki, M. Oi, Systematic analyses of the \(t+t\) clustering effect in He isotopes. Phys. Rev. C 74, 017307 (2006). https://doi.org/10.1103/PhysRevC.74.017307

    Article  Google Scholar 

  111. N. Itagaki, M. Ito, K. Arai et al., Mixing of di-neutron components in \({}^{8}{{\rm He}}\). Phys. Rev. C 78, 017306 (2008). https://doi.org/10.1103/PhysRevC.78.017306

    Article  Google Scholar 

  112. R. Wolski et al., in Clustering Aspects of Quantum Many-Body Systems, ed. by A. Ohnishi, N. Itagaki, Y. Kanada-Enyo, K. Kato (World Scientific, Singapore, 2001), p. 15. https://doi.org/10.1142/4946

  113. A.A. Korsheninnikov, EYu. Nikolskii, E.A. Kuzmin et al., Experimental evidence for the existence of \({}^{7}{{\rm H}}\) and for a specific structure of \({}^{8}{{\rm He}}\). Phys. Rev. Lett. 90, 082501 (2003). https://doi.org/10.1103/PhysRevLett.90.082501

    Article  Google Scholar 

  114. A.A. Korsheninnikov, M.S. Golovkov, I. Tanihata et al., Superheavy hydrogen \({}^{5}{{\rm H}}\). Phys. Rev. Lett. 87, 092501 (2001). https://doi.org/10.1103/PhysRevLett.87.092501

    Article  Google Scholar 

  115. K.L. Jones, Transfer reaction experiments with radioactive beams: from halos to the r-process. Phys. Scr. T152, 014020 (2013). https://doi.org/10.1088/0031-8949/2013/T152/014020

    Article  Google Scholar 

  116. A.A. Korsheninnikov, M.S. Golovkov, A. Ozawa et al., Observation of an excited state in \({}^{7}{{\rm He}}\) with unusual structure. Phys. Rev. Lett. 82, 3581 (1999). https://doi.org/10.1103/PhysRevLett.82.3581

    Article  Google Scholar 

  117. K. Hagino, H. Sagawa, T. Nakamura et al., Two-particle correlations in continuum dipole transitions in Borromean nuclei. Phys. Rev. C 80, 031301(R) (2009). https://doi.org/10.1103/PhysRevC.80.031301

    Article  Google Scholar 

  118. F. Skaza, V. Lapoux, N. Keeley et al., Experimental evidence for subshell closure in \({}^{8}{{\rm He}}\) and indication of a resonant state in \({}^{7}{{\rm He}}\) below 1 MeV. Phys. Rev. C 73, 044301 (2006). https://doi.org/10.1103/PhysRevC.73.044301

    Article  Google Scholar 

  119. M. Vorabbi, A. Calci, P. Navrátil et al., Structure of the exotic \({}^{9}{{\rm He}}\) nucleus from the no-core shell model with continuum. Phys. Rev. C 97, 034314 (2018). https://doi.org/10.1103/PhysRevC.97.034314

    Article  Google Scholar 

  120. M.S. Golovkov, L.V. Grigorenko, A.S. Fomichev et al., New insight into the low-energy \({}^{9}{{\rm He}}\) spectrum. Phys. Rev. C 76, 021605(R) (2007). https://doi.org/10.1103/PhysRevC.76.021605

    Article  Google Scholar 

  121. L. Chen, B. Blank, B.A. Brown et al., Evidence for an \(l=0\) ground state in \({}^{9}{{\rm He}}\). Phys. Lett. B 505, 21–26 (2001). https://doi.org/10.1016/S0370-2693(01)00313-6

    Article  Google Scholar 

  122. E. Garrido, D.V. Fedorov, A.S. Jensen, The \({}^{10}{{\rm Li}}\) spectrum and the \({}^{11}{{\rm Li}}\) properties. Nucl. Phys. A 700, 117–141 (2002). https://doi.org/10.1016/S0375-9474(01)01310-0

    Article  Google Scholar 

  123. H.B. Jeppesen, A.M. Moro, U.C. Bergmann et al., Study of \({}^{10}{{\rm Li}}\) via the \({}^{9}{{\rm Li}}({}^{2}{{\rm H}}, \, p)\) reaction at REX-ISOLDE. Phys. Lett. B 642, 449–454 (2006). https://doi.org/10.1016/j.physletb.2006.09.060

    Article  Google Scholar 

  124. P. Santi, J.J. Kolata, V. Guimãraes et al., Structure of the \({}^{10}{{\rm Li}}\) nucleus investigated via the \({}^{9}{{\rm Li}}(d, \, p){}^{10}{{\rm Li}}\) reaction. Phys. Rev. C 67, 024606 (2003). https://doi.org/10.1103/PhysRevC.67.024606

    Article  Google Scholar 

  125. A.M. Moro, J. Casal, M. Gómez-Ramosa, Investigating the \({}^{10}{{\rm Li}}\) continuum through \({}^{9}{{\rm Li}}(d, \, p){}^{10}{{\rm Li}}\) reactions. Phys. Lett. B 793, 13–18 (2019). https://doi.org/10.1016/j.physletb.2019.04.015

    Article  Google Scholar 

  126. M. Cavallaro, M. De Napoli, F. Cappuzzello et al., Investigation of the \({}^{10}{{\rm Li}}\) shell inversion by neutron continuum transfer reaction. Phys. Rev. Lett. 118, 012701 (2017). https://doi.org/10.1103/PhysRevLett.118.012701

    Article  Google Scholar 

  127. A. Sanetullaev, R. Kanungo, J. Tanaka et al., Investigation of the role of \({}^{10}{{\rm Li}}\) resonances in the halo structure of \({}^{11}{{\rm Li}}\) through the \({}^{11}{{\rm Li}}(p, \, d){}^{10}{{\rm Li}}\) transfer reaction. Phys. Lett. B 755, 481–485 (2016). https://doi.org/10.1016/j.physletb.2016.02.060

    Article  Google Scholar 

  128. J. Casal, M. Gómez-Ramos, A.M. Moro, Description of the \({}^{11}{{\rm Li}}(p, \, d){}^{10}{{\rm Li}}\) transfer reaction using structure overlaps from a full three-body model. Phys. Lett. B 767, 307–313 (2017). https://doi.org/10.1016/j.physletb.2017.02.017

    Article  Google Scholar 

  129. D.H. Wilkinson, D.E. Alburger, Beta decay of \({\rm {Be}^{11}}\). Phys. Rev. 113, 563 (1959). https://doi.org/10.1103/PhysRev.113.563

    Article  Google Scholar 

  130. I. Talmi, I. Unna, Order of levels in the shell model and spin of \({\rm {Be}^{11}}\). Phys. Rev. Lett. 4, 469 (1960). https://doi.org/10.1103/PhysRevLett.4.469

    Article  Google Scholar 

  131. J.S. Winfield, S. Fortier, W.N. Catford et al., Single-neutron transfer from \({}^{11}{{\rm Be}_{gs}}\) via the (\(p, \, d\)) reaction with a radioactive beam. Nucl. Phys. A 683, 48–78 (2001). https://doi.org/10.1016/S0375-9474(00)00463-2

    Article  Google Scholar 

  132. S. Fortier, S. Pita, J.S. Winfield et al., Core excitation in \({}^{11}{{\rm Be}_{\text{ gs }}}\) via the \(p({}^{11}{{\rm Be}}, \, {}^{10}{{\rm Be}})d\). Phys. Lett. B 461, 22–27 (1999). https://doi.org/10.1016/S0370-2693(99)00825-4

    Article  Google Scholar 

  133. J. Ying, J.-L. Lou, Y.L. Ye et al., A new measurement of \({}^{11}{{\rm Be}}(p, \, d)\) transfer reaction. Chin. Phys. Lett. 35, 082501 (2018). https://doi.org/10.1088/0256-307X/35/8/082501

    Article  Google Scholar 

  134. H.T. Fortune, R. Sherr, Consistent description of \({}^{11}{{\rm Be}}\) and \({}^{12}{{\rm Be}}\) and of the \({}^{11}{{\rm Be}}(d, \, p){}^{12}{{\rm Be}}\) reaction. Phys. Rev. C 85, 051303(R) (2012). https://doi.org/10.1103/PhysRevC.85.051303

    Article  Google Scholar 

  135. J.G. Johansen, V. Bildstein, M.J.G. Borge et al., Experimental study of bound states in \({}^{12}{{\rm Be}}\) through low-energy \({}^{11}{{\rm Be}}(d, \, p)\)-transfer reactions. Phys. Rev. C 88, 044619 (2013). https://doi.org/10.1103/PhysRevC.88.044619

    Article  Google Scholar 

  136. J. Chen, J.L. Lou, Y.L. Ye et al., Low-lying states in \({}^{12}{{\rm Be}}\) using one-neutron transfer reaction. Phys. Rev. C 98, 014616 (2018). https://doi.org/10.1103/PhysRevC.98.014616

    Article  Google Scholar 

  137. S. Ota, S. Shimoura, H. Iwasaki et al., Low-lying proton intruder state in \({}^{13}{{\rm B}}\). Phys. Lett. B 666, 311–314 (2008). https://doi.org/10.1016/j.physletb.2008.07.081

    Article  Google Scholar 

  138. H. Iwasaki, A. Dewald, C. Fransen et al., Low-lying neutron intruder state in \({}^{13}{{\rm B}}\) and the fading of the \(N=8\) shell closure. Phys. Rev. Lett. 102, 202502 (2009). https://doi.org/10.1103/PhysRevLett.102.202502

    Article  Google Scholar 

  139. J.D. Goss, P.L. Jolivette, C.P. Browne et al., Angular distribution measurements for \({}^{14}{{\rm C}}(d, \, p){}^{15}{{\rm C}}\) and the level structure of \({}^{15}{{\rm C}}\). Phys. Rev. C 12, 1730 (1975). https://doi.org/10.1103/PhysRevC.12.1730

    Article  Google Scholar 

  140. H.T. Fortune, Matter radii and configuration mixing in \({}^{15-19}{{\rm C}}\). Eur. Phys. J. A 54, 73 (2018). https://doi.org/10.1140/epja/i2018-12506-6

    Article  Google Scholar 

  141. C.R. Hoffman, B.P. Kay, J.P. Schiffer et al., Neutron \(s\) states in loosely bound nuclei. Phys. Rev. C 89, 061305(R) (2014). https://doi.org/10.1103/PhysRevC.89.061305

    Article  Google Scholar 

  142. D.W. Bardayan, P.D. O’Malley, J.C. Blackmon et al., Spectroscopic study of low-lying \({}^{16}{{\rm N}}\) levels. Phys. Rev. C 78, 052801(R) (2008). https://doi.org/10.1103/PhysRevC.78.052801

    Article  Google Scholar 

  143. T.L. Ma, B. Guo, Z.H. Li et al., Precision measurement of the angular distribution for the \({}^{16}{{\rm O}}(d, \, p){}^{17}{{\rm O}}\) transfer reaction to the ground state of \({}^{17}{{\rm O}}\). Nucl. Phys. A 986, 26–33 (2019). https://doi.org/10.1016/j.nuclphysa.2019.03.004

    Article  Google Scholar 

  144. J. Chen, C.R. Hoffman, T. Ahn et al., Experimental study of the effective nucleon–nucleon interaction using the \({}^{21}{{\rm F}}(d, \, p){}^{22}{{\rm F}}\) reaction. Phys. Rev. C 98, 014325 (2018). https://doi.org/10.1103/PhysRevC.98.014325

    Article  Google Scholar 

  145. S.M. Brown, W.N. Catford, J.S. Thomas et al., Low-lying neutron \(fp\)-shell intruder states in \({}^{27}{{\rm Ne}}\). Phys. Rev. C 85, 011302(R) (2012). https://doi.org/10.1103/PhysRevC.85.011302

    Article  Google Scholar 

  146. G.L. Wilson, W.N. Catford, N.A. Orr et al., Shell evolution approaching the \(N=20\) island of inversion: structure of \({}^{26}{{\rm Na}}\). Phys. Lett. B 759, 417–423 (2016). https://doi.org/10.1016/j.physletb.2016.05.093

    Article  Google Scholar 

  147. A. Matta, W.N. Catford, N.A. Orr et al., Shell evolution approaching the \(N=20\) island of inversion: structure of \({}^{29}{{\rm Mg}}\). Phys. Rev. C 99, 044320 (2019). https://doi.org/10.1103/PhysRevC.99.044320

    Article  Google Scholar 

  148. L. Gaudefroy, O. Sorlin, F. Nowacki et al., Structure of the \(N=27\) isotones derived from the \({}^{44}{{\rm Ar}}(d, \, p){}^{45}{{\rm Ar}}\) reaction. Phys. Rev. C 78, 034307 (2008). https://doi.org/10.1103/PhysRevC.78.034307

    Article  Google Scholar 

  149. L. Gaudefroy, O. Sorlin, D. Beaumel et al., Reduction of the spin-orbit splittings at the \(N=28\) shell closure. Phys. Rev. Lett. 97, 092501 (2006). https://doi.org/10.1103/PhysRevLett.97.092501

    Article  Google Scholar 

  150. J. Diriken, N. Patronis, A. Andreyev et al., Experimental study of the \({}^{66}{{\rm Ni}}(d, \, p){}^{67}{{\rm Ni}}\) one-neutron transfer reaction. Phys. Rev. C 91, 054321 (2015). https://doi.org/10.1103/PhysRevC.91.054321

    Article  Google Scholar 

  151. P. Morfouace, S. Franchoo, K. Sieja et al., Single-particle strength in neutron-rich 69Cu from the \({}^{70}{{\rm Zn}}(d, \, {}^{3}{{\rm He}}) {}^{69}{{\rm Cu}}\) proton pick-up reaction. Phys. Rev. C 93, 064308 (2016). https://doi.org/10.1103/PhysRevC.93.064308

    Article  Google Scholar 

  152. P. Morfouace, S. Franchoo, K. Sieja et al., Evolution of single-particle strength in neutron-rich \({}^{71}{{\rm Cu}}\). Phys. Lett. B 751, 306–310 (2015). https://doi.org/10.1016/j.physletb.2015.10.064

    Article  Google Scholar 

  153. J.S. Thomas, G. Arbanas, D.W. Bardayan et al., Single-neutron excitations in neutron-rich \({}^{83}{{\rm Ge}}\) and \({}^{85}{{\rm Se}}\). Phys. Rev. C 76, 044302 (2007). https://doi.org/10.1103/PhysRevC.76.044302

    Article  Google Scholar 

  154. S. Cruz, P.C. Bender, R. Krucken et al., Shape coexistence and mixing of low-lying \({0}^{+}\) states in \({}^{96}{{\rm Sr}}\). Phys. Lett. B 786, 94–99 (2018). https://doi.org/10.1016/j.physletb.2018.09.031

    Article  Google Scholar 

  155. S. Cruz, K. Wimmer, P.C. Bender et al., Single-particle structure of neutron-rich Sr isotopes via \({}^{2}{{\rm H}}({}^{94,95,96}{{\rm Sr}}, \, p)\) reactions. Phys. Rev. C 100, 054321 (2019). https://doi.org/10.1103/PhysRevC.100.054321

    Article  Google Scholar 

  156. K.L. Jones, A.S. Adekola, D.W. Bardayan et al., The magic nature of \({}^{132}{{\rm Sn}}\) explored through the single-particle states of \({}^{133}{{\rm Sn}}\). Nature 465, 454–457 (2010). https://doi.org/10.1038/nature09048

    Article  Google Scholar 

  157. R. Orlandi, S.D. Pain, S. Ahn et al., Neutron-hole states in \({}^{131}{{\rm Sn}}\) and spin-orbit splitting in neutron-rich nuclei. Phys. Lett. B 785, 615–620 (2018). https://doi.org/10.1016/j.physletb.2018.08.005

    Article  Google Scholar 

  158. T.J. Ross, R.O. Hughes, J.M. Allmond et al., Spectroscopy of \({}^{153}{{\rm Gd}}\) and \({}^{157}{{\rm Gd}}\) using the \((p, d\gamma )\) reaction. Phys. Rev. C 90, 044323 (2014). https://doi.org/10.1103/PhysRevC.90.044323

    Article  Google Scholar 

  159. Y.P. Xu, D.Y. Pang, X.Y. Yun et al., Proton-neutron asymmetry independence of reduced single-particle strengths derived from (\(p, \, d\)) reactions. Phys. Lett. B 790, 308 (2019). https://doi.org/10.1016/j.physletb.2019.01.034

    Article  Google Scholar 

  160. D.W. Bardayan, Transfer reaction in nuclear astrophysics. J. Phys. G Nucl. Part. Phys. 43, 043001 (2016). https://doi.org/10.1088/0954-3899/43/4/043001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ling Lou.

Additional information

This work was supported by the National Key R&D program of China (No. 2018YFA0404403), and National Natural Science Foundation of China (Nos. 11775004, U1867214, and 11535004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Lou, JL., Ye, YL. et al. Experimental study of intruder components in light neutron-rich nuclei via single-nucleon transfer reaction. NUCL SCI TECH 31, 20 (2020). https://doi.org/10.1007/s41365-020-0731-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-0731-y

Keywords

Navigation