Skip to main content
Log in

Exploratory extended redundancy analysis using sparse estimation and oblique rotation of parameter matrices

  • Original Paper
  • Published:
Behaviormetrika Aims and scope Submit manuscript

Abstract

Extended redundancy analysis (ERA) is a multivariate analysis procedure that regresses dependent variable(s) on the component scores, defined as weighted sums of independent variables. ERA requires information on the group structure of the independent variables, which is not available in many cases. The research proposes a new exploratory variant of ERA called exploratory ERA (ExERA), which does not require the group structure but estimates it using the dataset. ExERA is further classified into the following two procedures: ExERA-Sp and ExERA-R. ExERA-Sp estimates the group structure of independent variables by sparsely estimating the weight matrix, while ExERA-R approximates a similar structure obtained using ExERA-Sp and obliquely rotating the weight matrix. The performance of the two procedures was investigated using numerical simulation and a real data example. The results showed that the proposed methods were effective for exploratory data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data will be made available on reasonable request by readers.

References

  • Adachi K (2011) Constrained principal component analysis of standardized data for biplots with unit-length variable vectors. Adv Data Anal Classif 5(1):23–36

    Article  MathSciNet  MATH  Google Scholar 

  • Adachi K, Trendafilov NT (2018) Sparsest factor analysis for clustering variables: a matrix decomposition approach. Adv Data Anal Classif 12:559–585

    Article  MathSciNet  MATH  Google Scholar 

  • Aggarwal CC, Reddy CK (2013) Data clustering: algorithms and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Anderson TW (1951) Estimating linear restrictions on regression coefficients for multivariate normal distributions. In: The Annals of Mathematical Statistics, 327–351

  • Bentler PM (1980) Multivariate analysis with latent variables: causal modeling. Annu Rev Psychol 31(1):419–456

    Article  Google Scholar 

  • Bentler PM (1986) Structural modeling and Psychometrika: an historical perspective on growth and achievements. Psychometrika 51(1):35–51

    Article  Google Scholar 

  • Bernaards CA, Jennrich RI (2003) Orthomax rotation and perfect simple structure. Psychometrika 68(4):585–588

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L, Huang JZ (2012) Sparse reduced-rank regression for simultaneous dimension reduction and variable selection. J Am Stat Assoc 107(500):1533–1545

    Article  MathSciNet  MATH  Google Scholar 

  • Chu MT, Trendafilov NT (2001) The orthogonally constrained regression revisited. J Comput Graph Stat 10(4):746–771

    Article  MathSciNet  Google Scholar 

  • Fornell C, Barclay DW, Rhee BD (1988) A model and simple iterative algorithm for redundancy analysis. Multivar Behav Res 23(3):349–360

    Article  Google Scholar 

  • Fu L, Lin P, Vasilakos AV, Wang S (2020) An overview of recent multi-view clustering. Neurocomputing 402:148–161

    Article  Google Scholar 

  • García-Baquero Moneo G, Gowing DJ, Wallace H (2022) The contribution of the spatial hydrological niche to species diversity in rare plant communities of English floodplain meadows. Plant Ecol 1–14

  • Gower JC, Dijksterhuis GB (2004) Procrustes problems (Vol. 30). OUP Oxford

  • Harris CW, Kaiser HF (1964) Oblique factor analytic solutions by orthogonal transformations. Psychometrika 29(4):347–362

    Article  MathSciNet  Google Scholar 

  • Harville DA (1997) Matrix algebra from a Statistician’s perspective. Springer, New York

    Book  MATH  Google Scholar 

  • Hastie T, Tibshirani R, Wainwright M (2015) Statistical Learning with Sparsity, The Lasso and Generalizations. Chapman and Hall/CRC, New York

  • Hendrickson AE, White PO (1964) Promax: a quick method for rotation to oblique simple structure. Br J Stat Psychol 17(1):65–70

    Article  Google Scholar 

  • Hirose K, Terada Y (2022) Sparse and simple structure estimation via prenet penalization. Psychometrika

  • Hwang H, Takane Y (2004) Generalized structured component analysis. Psychometrika 69(1):81–99

    Article  MathSciNet  MATH  Google Scholar 

  • Hwang H, Takane Y (2014) Generalized structured component analysis: a component-based approach to structural equation modeling. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Hwang H, DeSarbo WS, Takane Y (2007) Fuzzy clusterwise generalized structured component analysis. Psychometrika 72(2):181

    Article  MathSciNet  MATH  Google Scholar 

  • Izenman AJ (2008) Modern multivariate statistical techniques. In: Regression, classification and manifold learning. Springer-Verlag, New York.

  • Jennrich RI (2002) A simple general method for oblique rotation. Psychometrika 67(1):7–19

    Article  MathSciNet  MATH  Google Scholar 

  • Jennrich RI (2006) Rotation to simple loadings using component loss functions: the oblique case. Psychometrika 71:173–191

    Article  MathSciNet  MATH  Google Scholar 

  • Johansson JK (1981) An extension of Wollenberg’s redundancy analysis. Psychometrika 46(1):93–103

    Article  MathSciNet  Google Scholar 

  • Kaiser HF (1974) An index of factorial simplicity. Psychometrika 39(1):31–36

    Article  MATH  Google Scholar 

  • Mayekawa S, Yamashita N (2020) Bayesian reduced rank multigroup regression analysis: a new model for multigroup data with hybrid parameter sharing. Behaviormetrika 47(2):411–426

    Article  Google Scholar 

  • McMahan CD, Fuentes-Montejo CE, Ginger L, Carrasco JC, Chakrabarty P, Matamoros WA (2020) Climate change models predict decreases in the range of a microendemic freshwater fish in Honduras. Sci Rep 10(1):1–10

    Article  Google Scholar 

  • Mulaik SA (1972) The foundation of factor analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  • Mulaik SA (1986) Factor analysis and Psychometrika: major developments. Psychometrika 51(1):23–33

    Article  MathSciNet  Google Scholar 

  • Mulaik SA (2009) Foundations of factor analysis (second edition). CRC Press, Boca Raton

    Book  Google Scholar 

  • Rao CR (1964) The use and interpretation of principal component analysis in applied research. Sankhyā Indian J Stat Ser A 329–358

  • Reinsel GC, Velu RP, Chen K (2022) Multivariate reduced-rank regression: theory, methods and applications, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Takane Y, Hwang H (2005) An extended redundancy analysis and its applications to two practical examples. Comput Stat Data Anal 49(3):785–808

    Article  MathSciNet  MATH  Google Scholar 

  • Tenenhaus M, Vinzi VE, Chatelin YM, Lauro C (2005) PLS path modeling. Comput Stat Data Anal 48(1):159–205

    Article  MathSciNet  MATH  Google Scholar 

  • Thorne ED, Ford WM (2022) Redundancy analysis reveals complex den use patterns by eastern spotted skunks, a conditional specialist. Ecosphere 13(1):e3913

    Article  Google Scholar 

  • van den Wollenberg AL (1977) Redundancy analysis an alternative for canonical correlation analysis. Psychometrika 42(2):207–219

    Article  MATH  Google Scholar 

  • Yamashita N, Adachi K (2020) Permutimin: factor rotation to simple structure with permutation of variables. Multivar Behav Res 55(1):17–29

    Article  Google Scholar 

  • Yamashita N, Mayekawa S (2014) A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering. Adv Data Anal Classif 9(3):243–266

    Article  MathSciNet  MATH  Google Scholar 

  • Yanai H, Takagi H (1986) Handbook of Multivariate Analysis. Genda-Sugaku-Sha (In Japanese)

  • Yanai H, Takeuchi K, Takane Y (2011) Projection matrices, generalized inverse matrices, and singular value decomposition. Springer, New York

    Book  MATH  Google Scholar 

  • Yoshikawa K, Kawano S (2022) Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization. Comput Stat

  • Zhao Z, Palomar DP (2018) Sparse reduced rank regression with nonconvex regularization. In: 2018 IEEE Statistical Signal Processing Workshop (SSP). IEEE, pp 811–815

  • Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research was supported by JSPS KAKENHI Grant Number 23K16854.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Yamashita.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Kei Hirose.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, N. Exploratory extended redundancy analysis using sparse estimation and oblique rotation of parameter matrices. Behaviormetrika 50, 679–697 (2023). https://doi.org/10.1007/s41237-023-00200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41237-023-00200-7

Keywords

Navigation