Skip to main content
Log in

Fuzzy Clusterwise Generalized Structured Component Analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Generalized Structured Component Analysis (GSCA) was recently introduced by Hwang and Takane (2004) as a component-based approach to path analysis with latent variables. The parameters of GSCA are estimated by pooling data across respondents under the implicit assumption that they all come from a single, homogenous group. However, as has been empirically demonstrated by various researchers across a number of areas of inquiry, such aggregate analyses can often mask the true structure in data when respondent heterogeneity is present. In this paper, GSCA is generalized to a fuzzy clustering framework so as to account for potential group-level respondent heterogeneity. An alternating least-squares procedure is developed and technically described for parameter estimation. A small-scale Monte Carlo study involving synthetic data is carried out to compare the performance between the proposed method and an extant approach. In addition, an empirical application concerning alcohol use among adolescents from US northwestern urban areas is presented to illustrate the usefulness of the proposed method. Finally, a number of directions for future research are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arabie, P., Carroll, J.D., DeSarbo, W.S., & Wind, J. (1981). Overlapping clustering: A new method for product positioning. Journal of Marketing Research, 18, 310–317.

    Article  Google Scholar 

  • Arabie, P., & Hubert, L. (1994). Cluster analysis in marketing research. In R.P. Bagozzi (Ed.), Advanced methods of marketing research (pp. 160–189). Oxford: Blackwell.

    Google Scholar 

  • Bagozzi, R.P. (1982). A field investigation of causal relations among cognition, affect, intensions, and behavior. Journal of Marketing Research, 19, 562–584.

    Article  Google Scholar 

  • Bauer, D.J., & Curran, P.J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338–363.

    Article  PubMed  Google Scholar 

  • Bentler, P.M., & Weeks, D.G. (1980). Linear structural equations with latent variables. Psychometrika, 45(3), 289–308.

    Article  Google Scholar 

  • Bezdek, J.C. (1974a). Numerical taxonomy with fuzzy sets. Journal of Mathematical Biology, 1, 57–71.

    Article  Google Scholar 

  • Bezdek, J.C. (1974b). Cluster validity with fuzzy set. Journal of Cybernetics, 3, 58–72.

    Article  Google Scholar 

  • Bezdek, J.C. (1981). Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press.

    Google Scholar 

  • Bezdek, J.C., Coray, C., Gunderson, R., & Watson, J. (1981). Detection and characteristics of cluster substructure. II. Fuzzy c-varieties and convex combinations thereof. SIAM Journal on Applied Mathematics, 40, 358–372.

    Article  Google Scholar 

  • Bock, R.D. (1989). Multilevel analysis of educational data. San Diego: Academic Press.

    Google Scholar 

  • Bock, R.D., & Bargmann, R.E. (1966). Analysis of covariance structures. Psychometrika, 31, 507–534.

    Article  PubMed  Google Scholar 

  • Chin, W.W. (1998). Issues and opinion on structural equation modeling. Management Information Systems Quarterly, 22, 7–16.

    Google Scholar 

  • de Leeuw, J., Young, F.W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika, 41, 471–503.

    Article  Google Scholar 

  • Dempster, A.P., Laird, N.M., & Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM-algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–18.

    Google Scholar 

  • DeSarbo, W.S., & Cron, W.L. (1988). A conditional mixture maximum likelihood methodology for clusterwise linear regression. Journal of Classification, 5, 249–289.

    Article  Google Scholar 

  • DeSarbo, W.S., Grewal, R., & Hwang, H. (2006). A clusterwise bilinear multidimensional scaling methodology for marketing research: An application to the estimation of strategic groups. Unpublished manuscript.

  • Duncan, T.E., Duncan, S.C., Alpert, A., Hops, H., Stoolmiller, M., & Muthén, B. (1997). Latent variable modeling of longitudinal and multilevel substance use data. Multivariate Behavioral Research, 32, 275–318.

    Article  Google Scholar 

  • Dunn, J.C. (1974). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3, 32–57.

    Article  Google Scholar 

  • Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia: SIAM.

    Google Scholar 

  • Everitt, B.S., Landau, S., & Leese, M. (2001). Cluster analysis (4th ed.). London: Arnold Press.

  • Fornell, C., & Bookstein, F.L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440–452.

    Article  Google Scholar 

  • Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley.

    Google Scholar 

  • Goldstein, H.I. (1987). Multilevel models in educational and social research. London: Oxford University Press.

    Google Scholar 

  • Gordon, A.D. (1999). Classification. London: Chapman & Hall/CRC.

    Google Scholar 

  • Hathaway, R.J., & Bezdek, J.C. (1993). Switching regression models and fuzzy clutering. IEEE Transactions on Fuzzy Systems, 1, 195–204.

    Article  Google Scholar 

  • Heiser, W.J., & Groenen, P.J.F. (1997). Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima. Psychometrika, 62, 63–83.

    Article  Google Scholar 

  • Hox, J.J. (1995). Applied multilevel analysis. Amsterdam: T-T Publikaties.

    Google Scholar 

  • Hruschka, H. (1986). Market definition and segmentation using fuzzy clustering methods. International Journal of Research in Marketing, 3, 117–134.

    Article  Google Scholar 

  • Hwang, H., & Takane, Y. (2002). Structural equation modeling by extended redundancy analysis. In S. Nishisato, Y. Baba, H. Bozdogan, & K. Kanefuji (Eds.), Measurement and multivariate analysis (pp. 115–124). Tokyo: Springer-Verlag.

  • Hwang, H., & Takane, Y. (2004). Generalized structured component analysis. Psychometrika, 69, 81–99.

    Article  Google Scholar 

  • Jedidi, K., Jagpal, H.S., & DeSarbo, W. S. (1997). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 39–59.

    Article  Google Scholar 

  • Jöreskog, K.G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 409–426.

    Article  Google Scholar 

  • Jöreskog, K. G. (1973). A generating method for estimating a linear structural equation system. In A.S. Goldberger & O.D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). New York: Academic Press.

  • Kamakura, W.A., Kim, B., & Lee, J. (1996). Modeling preference and structural heterogeneity in consumer choice. Marketing Science, 15, 152–172.

    Article  Google Scholar 

  • MacCallum, R.C., Kim, C., Malarkey, W.B., & Kiecolt-Glaser, J.K. (1997). Studying multivariate change using multilevel models and latent curve models. Multivariate Behavioral Research, 32, 215–253.

    Article  Google Scholar 

  • Manton, K.G., Woodbury, M.A., & Tolley, H.D. (1994). Statistical applications using fuzzy sets. New York: Wiley.

    Google Scholar 

  • McArdle, J.J., & McDonald, R.P. (1984). Some algebraic properties of the reticular action model for moment structures. British Journal of Mathematical and Statistical Psychology, 37, 234–251.

    PubMed  Google Scholar 

  • McBratney, A.B., & Moore, A.W. (1985). Application of fuzzy sets to climatic classification. Agricultural and Forest Meteorology, 35, 165–185.

    Article  Google Scholar 

  • McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.

    Book  Google Scholar 

  • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.

    Article  Google Scholar 

  • Moffitt, T.E. (1993). Adolescent-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review, 100, 674–701.

    Article  PubMed  Google Scholar 

  • Mulaik, S.A. (1972). The foundations of factor analysis. New York: McGraw-Hill.

    Google Scholar 

  • Muthén, B.O. (2001). Latent variable mixture modeling. In G.A. Marcoulides, & R.E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 1–13). Mahwah, NJ: Erlbaum.

  • Muthén, L.K., & Muthén, B.O. (2001). Mplus user’s guide (2nd ed.). Los Angeles: Muthén & Muthén.

  • Nagin, D. (1999). Analyzing developmental trajectories: A semi-parametric, group-based approach. Psychological Methods, 4, 139–157.

    Article  Google Scholar 

  • Okeke, F., & Karnieli, A. (2006). Linear mixture model approach for selecting fuzzy exponent values in fuzzy c-means algorithm. Ecological Informatics, 1, 117–124.

    Article  Google Scholar 

  • Ramaswamy, V., DeSarbo, W.S., Reibstein, D., & Robinson, W. (1993). An empirical pooling approach for estimating marketing mix elasticities with PIMS data. Marketing Science, 12, 103–124.

    Article  Google Scholar 

  • Raudenbush, S.W., & Bryk, A.S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.

  • Roubens, M. (1982). Fuzzy clustering algorithms and their cluster validity. European Journal of Operational Research, 10, 294–301.

    Article  Google Scholar 

  • Tucker, L.R. (1951). A method for synthesis of factor analysis studies (Personnel Research Section Report No. 984). Washington, DC: US Department of the Army.

  • Velicer, W.F., & Jackson, D.N. (1990). Component analysis versus common factor analysis: Some issues in selecting appropriate procedure. Multivariate Behavioral Research, 25, 1–28.

    Article  Google Scholar 

  • Wedel, M., & Kamakura, W.A. (1998). Market segmentation: Conceptual and methodological foundations. Boston: Kluwer Academic.

    Google Scholar 

  • Wedel, M., & Steenkamp, J.-B.E.M. (1989). Fuzzy clusterwise regression approach to benefit segmentation. International Journal of Research in Marketing, 6, 241–258.

    Article  Google Scholar 

  • Wedel, M., & Steenkamp, J.-B.E.M. (1991). A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation. Journal of Marketing Research, 28, 385–396.

    Article  Google Scholar 

  • Wind, Y. (1978). Issues and advances in segmentation research. Journal of Marketing Research, 15, 317–337.

    Article  Google Scholar 

  • Yang, C.C. (1998). Finite mixture model selection with psychometric applications. Unpublished doctoral dissertation. University of California, Los Angeles.

  • Young, F.W. (1981). Quantitative analysis of qualitative data. Psychometrika, 46, 357–388.

    Article  Google Scholar 

  • Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heungsun Hwang.

Additional information

The work reported in this paper was supported by Grant 290439 and Grant A6394 from the Natural Sciences and Engineering Research Council of Canada to the first and third authors, respectively. We wish to thank Terry Duncan for generously providing us with his alcohol use data. We also wish to thank the Editor, Associate Editor, and two anonymous reviewers for their constructive comments which helped improve the overall quality and readability of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, H., Desarbo, W.S. & Takane, Y. Fuzzy Clusterwise Generalized Structured Component Analysis. Psychometrika 72, 181–198 (2007). https://doi.org/10.1007/s11336-005-1314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-005-1314-x

Key words

Navigation