Skip to main content
Log in

Structural modeling and psychometrika: An historical perspective on growth and achievements

  • 50th Anniversary Section
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The field of linear structural equation modeling with continuous variables is reviewed. Trends in psychometric theory and data analysis across the five decades of publication ofPsychometrika are discussed, especially the clarification of concepts of population and sample, explication of the parametric structure of models, delineation of concepts of exploratory and confirmatory data analysis, expansion of statistical theory in psychometrics, estimation via optimization of an explicit objective function, and implementation of general function minimization methods. Developments in the ideas of factor analysis, latent variables, as well as structural and causal modeling are noted. Some major conceptual achievements involving general covariance structure representations, multiple population models, and moment structures are reviewed. The major statistical achievements of normal theory generalized least squares estimation, elliptical and distribution-free estimation, and higher-moment estimation are discussed. Computer programs that implement some of the theoretical developments are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner, D. J., & Goldberger, A. S. (Eds.). (1977).Latent variables in socioeconomic models. Amsterdam: North-Holland.

    Google Scholar 

  • Aigner, D. J., Hsiao, C., Kapteyn, A., & Wansbeek, T. (1984). Latent variable models in econometrics. In Z. Griliches & M. D. Intriligator (Eds.),Handbook of econometrics, Vol. 2 (pp. 1321–1393). Amsterdam: North-Holland.

    Google Scholar 

  • Amemiya, Y., & Fuller, W. A. (1984). Estimation for the multivariate errors-in-variables model with estimated error covariance matrix.The Annals of Statistics, 12, 497–509.

    Google Scholar 

  • Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analyses.Psychometrika, 49, 155–173.

    Google Scholar 

  • Anderson, T. W. (1973). Asymptotically efficient estimation of covariance matrices with linear structure.The Annals of Statistics, 1, 135–141.

    Google Scholar 

  • Anderson, T. W. (1984). Estimating linear statistical relationships.The Annals of Statistics, 12, 1–45.

    Google Scholar 

  • Anderson, T. W., & Rubin, H. (1956). Statistical inference in factor analysis.Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (pp. 111–150). Berkeley: University of California Press.

    Google Scholar 

  • Bartholomew, D. J. (1984). The foundations of factor analysis.Biometrika, 71, 221–232.

    Google Scholar 

  • Bearden, W. O., Sharma, S., & Teel, J. E. (1982). Sample size effects on chi-square and other statistics used in evaluating causal models.Journal of Marketing Research, 19, 425–430.

    Google Scholar 

  • Bechtold, H. P. (1961). An empirical study of the factor analysis stability hypothesis.Psychometrika, 26, 405–432.

    Google Scholar 

  • Bentler, P. M. (1968). Alpha-maximized factor analysis (Alphamax): Its relation to alpha and canonical factor analysis.Psychometrika, 33, 335–345.

    Google Scholar 

  • Bentler, P. M. (1976). Multistructure statistical model applied to factor analysis.Multivariate Behavioral Research, 11, 3–25.

    Google Scholar 

  • Bentler, P. M. (1982). Linear systems with multiple levels and types of latent variables. In K. G. Jöreskog & H. Wold (Eds.),Systems under indirect observation: Causality, structure, prediction, Pt. I (pp. 101–130). Amsterdam: North-Holland.

    Google Scholar 

  • Bentler, P. M. (1983). Some contributions to efficient statistics in structural models: Specification and estimation of moment structures.Psychometrika, 48, 493–517.

    Google Scholar 

  • Bentler, P. M. (1985).Theory and implementation of EQS, a structural equations program. Los Angeles: BMDP Statistical Software.

    Google Scholar 

  • Bentler, P. M., & Berkane, M. (in press). The greatest lower bound to the elliptical kurtosis parameter.Biometrika.

  • Bentler, P. M., & Dijkstra, T. (1985). Efficient estimation via linearization in structural models. In P. R. Krishnaiah (Ed.),Multivariate analysis VI (pp. 9–42). Amsterdam: North-Holland.

    Google Scholar 

  • Bentler, P. M., & Lee, S.-Y. (1979). A statistical development of three-mode factor analysis.British Journal of Mathematical and Statistical Psychology, 32, 87–104.

    Google Scholar 

  • Bentler, P. M., & Lee, S.-Y. (1983). Covariance structures under polynomial constraints: Applications to correlation and alpha-type structural models.Journal of Educational Statistics, 8, 207–222, 315–317.

    Google Scholar 

  • Bentler, P. M., & Weeks, D. G. (1978). Restricted multidimensional scaling models.Journal of Mathematical Psychology, 17, 138–151.

    Google Scholar 

  • Bentler, P. M., & Weeks, D. G. (1979). Interrelations among models for the analysis of moment structures.Multivariate Behavioral Research, 14, 169–185.

    Google Scholar 

  • Bentler, P. M., & Weeks, D. G. (1980). Linear structural equations with latent variables.Psychometrika, 45, 289–308.

    Google Scholar 

  • Bentler, P. M., & Weeks, D. G. (1982). Multivariate analysis with latent variables. In P. R. Krishnaiah & L. Kanal (Eds.),Handbook of statistics (pp. 747–771). Amsterdam: North-Holland.

    Google Scholar 

  • Bentler, P. M., & Weeks, D. G. (1985). Some comments on structural equation models.British Journal of Mathematical and Statistical Psychology, 38, 120–121.

    Google Scholar 

  • Berkane, M., & Bentler, P. M. (1985). Tests for homogeneity of kurtoses. In preparation.

  • Berkson, J. (1980). Minimum chi-square, not maximum likelihood!The Annals of Statistics, 8, 457–487.

    Google Scholar 

  • Blalock, H. M. (1964).Causal inferences in nonexperimental research. Chapel Hill: University of North Carolina.

    Google Scholar 

  • Blalock, H. M. (Ed.). (1971).Causal models in the social sciences. Chicago: Aldine-Atherton.

    Google Scholar 

  • Bloxom, B. (1968). A note on invariance in three-mode factor analysis.Psychometrika, 33, 347–350.

    Google Scholar 

  • Bloxom, B. (1978). Constrained multidimensional scaling inN spaces.Psychometrika, 43, 397–408.

    Google Scholar 

  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of anEM algorithm.Psychometrika, 46, 443–459.

    Google Scholar 

  • Bock, R. D., & Bargmann, R. E. (1966). Analysis of covariance structures.Psychometrika, 31, 507–534.

    Google Scholar 

  • Boomsma, A. (1985). Nonconvergence, improper solutions, and starting values in LISREL maximum likelihood estimation.Psychometrika, 50, 229–242.

    Google Scholar 

  • Browne, M. W. (1968). A comparison of factor analytic techniques.Psychometrika, 33, 267–334.

    Google Scholar 

  • Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures.South African Statistical Journal, 8, 1–24.

    Google Scholar 

  • Browne, M. W. (1982). Covariance structures. In D. M. Hawkins (Ed.),Topics in applied multivariate analysis (pp. 72–141). London: Cambridge University Press.

    Google Scholar 

  • Browne, M. W. (1984a). The decomposition of multitrait-multimethod matrices.British Journal of Mathematical and Statistical Psychology, 37, 1–21.

    Google Scholar 

  • Browne, M. W. (1984b). Asymptotically distribution free methods for the analysis of covariance structures.British Journal of Mathematical and Statistical Psychology, 37, 62–83.

    Google Scholar 

  • Burguete, J. F., Gallant, A. R., & Souza, G. (1982). On the unification of the asymptotic theory of nonlinear econometric models.Econometric Reviews, 1, 151–190.

    Google Scholar 

  • Cambanis, S., Huang, S., & Simons, G. (1981). On the theory of elliptically contoured distributions.Journal of Multivariate Analysis, 11, 368–385.

    Google Scholar 

  • Chan, N. N., & Mak, T. K. (1983). Estimation of multivariate linear relationships.Biometrika, 70, 263–267.

    Google Scholar 

  • Corballis, M. C., & Traub, R. E. (1970). Longitudinal factor analysis.Psychometrika, 35, 79–98.

    Google Scholar 

  • Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests.Psychometrika, 16, 297–334.

    Google Scholar 

  • Cronbach, L. J. (1957). The two disciplines of scientific psychology.American Psychologist, 12, 671–684.

    Google Scholar 

  • Derflinger, G. (1984). A loss function for alpha factor analysis.Psychometrika, 49, 325–330.

    Google Scholar 

  • Dijkstra, T. (1983). Some comments on maximum likelihood and partial least squares methods.Journal of Econometrics, 22, 67–90.

    Google Scholar 

  • Duncan, O. D. (1966). Path analysis: Sociological examples.American Journal of Sociology, 72, 1–16.

    Google Scholar 

  • Dunlap, J. W. (1961). Psychometrics—a special case of the Brahman theory.Psychometrika, 26, 65–71.

    Google Scholar 

  • Dunlap, J. W., & Cureton, E. E. (1930). On the analysis of causation.Journal of Educational Psychology, 21, 657–680.

    Google Scholar 

  • Durbin J. (1954). Errors in variables.Review of the International Statistics Institute, 1, 23–32.

    Google Scholar 

  • Engelhart, M. D. (1936). The technique of path coefficients.Psychometrika, 1, 287–293.

    Google Scholar 

  • Etezadi-Amoli, J., & McDonald, R. P. (1983). A second generation nonlinear factor analysis.Psychometrika, 48, 315–342.

    Google Scholar 

  • Finkbeiner, C. T., & Tucker, L. R. (1982). Approximate uniqueness estimates for singular correlation matrices.Psychometrika, 47, 517–521.

    Google Scholar 

  • Frisch, R. (1934).Statistical confluence analysis by means of complete regression systems (Economics Institute Publication No. 5). Oslo: Oslo University.

    Google Scholar 

  • Gleser, L. J. (1981). Estimation in a multivariate “errors in variables” regression model: Large sample results.The Annals of Statistics, 9, 24–44.

    Google Scholar 

  • Goldberger, A. S. (1971). Econometrics and psychometrics: A survey of communalities.Psychometrika, 36, 83–107.

    Google Scholar 

  • Goldberger, A. S., & Duncan, O. D. (Eds.). (1973).Structural equation models in the social sciences. New York: Seminar.

    Google Scholar 

  • Gollob, H. F. (1968). A statistical model which combines features of factor analytic and analysis of variance techniques.Psychometrika, 33, 73–115.

    Google Scholar 

  • Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum likelihood methods: Theory.Econometrica, 52, 681–700.

    Google Scholar 

  • Griliches, Z. (1977). Errors in variables and other unobservables. In D. J. Aigner & A. S. Goldberger (Eds.),Latent variables in socioeconomic models (pp. 1–33). Amsterdam: North-Holland.

    Google Scholar 

  • Gulliksen, H. (1950).Theory of mental tests. New York: Wiley.

    Google Scholar 

  • Guttman, L. (1952). Multiple group methods for common factor analysis: Their basis, computation, and interpretation.Psychometrika, 17, 209–222.

    Google Scholar 

  • Guttman, L. (1953). Image theory for the structure of quantitative variates.Psychometrika, 18, 277–296.

    Google Scholar 

  • Guttman, L. (1954). A new approach to factor analysis: The radex. In P. F. Lazarsfeld (Ed.),Mathematical thinking in the social sciences (pp. 258–348). Glencoe, IL: The Free Press.

    Google Scholar 

  • Harlow, L. L. (1985).Behavior of some elliptical theory estimators with nonnormal data in a covariance structures framework: A Monte Carlo study. Unpublished doctoral dissertation, University of California, Los Angeles.

    Google Scholar 

  • Harman, H. H. (1969). Retrospective anticipation.Psychometrika, 34, 407–420.

    Google Scholar 

  • Harris, C. W. (1978). Note on the squared multiple correlation as a lower-bound to communality.Psychometrika, 43, 283–284.

    Google Scholar 

  • Hausman, J. A. (1977). Errors in variables in simultaneous equation models.Journal of Econometrics, 5, 389–401.

    Google Scholar 

  • Hurwicz, L., & Anderson, T. W. (1946).Statistical models with disturbances in equations and/or disturbances in variables. Unpublished Cowles Commission memoranda.

  • Jackson, D. J., & Tweed, D. L. (1980). Note on the squared multiple correlation as a lower bound to communality.Psychometrika, 45, 281–284.

    Google Scholar 

  • Jennrich, R. I., & Clarkson, D. B. (1980). A feasible method for standard errors of estimate in maximum likelihood factor analysis.Psychometrika, 45, 237–247.

    Google Scholar 

  • Jöreskog, K. G. (1967). Some contributions to maximum likelihood factor analysis.Psychometrika, 34, 443–482.

    Google Scholar 

  • Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis.Psychometrika, 34, 183–202.

    Google Scholar 

  • Jöreskog, K. G. (1970). A general method for analysis of covariance structures.Biometrika, 57, 239–251.

    Google Scholar 

  • Jöreskog, K. G. (1971). Simultaneous factor analysis in several populations.Psychometrika, 36, 409–426.

    Google Scholar 

  • Jöreskog, K. G. (1977). Structural equation models in the social sciences: Specification, estimation and testing. In P. R. Krishnaiah (Ed.),Application of statistics (p. 265–287). Amsterdam: North-Holland.

    Google Scholar 

  • Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices.Psychometrika, 43, 443–477.

    Google Scholar 

  • Jöreskog, K. G., & Goldberger, A. S. (1972). Factor analysis by generalized least squares.Psychometrika, 37, 243–260.

    Google Scholar 

  • Jöreskog, K. G., & Goldberger, A. S. (1975). Estimation of a model with multiple indicators and multiple causes of a single latent variable.Journal of the American Statistical Association, 70, 631–639.

    Google Scholar 

  • Jöreskog, K. G., & Sörbom, D. (1983).LISREL user's guide. Chicago: International Educational Services.

    Google Scholar 

  • Jöreskog, K. G., & Van Thillo, M. (1973).LISREL—A general computer program for estimating a linear structural equation system involving multiple indicators of unmeasured variables (Research Report 73-5). Uppsala: Uppsala University, Department of Statistics.

    Google Scholar 

  • Kagan, A. M., Linnik, Y. V., & Rao, C. R. (1973).Characterization problems in mathematical statistics. New York: Wiley.

    Google Scholar 

  • Kaiser, H. F., & Caffrey, J. (1965). Alpha factor analysis.Psychometrika, 30, 1–14.

    Google Scholar 

  • Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables.Psychological Bulletin, 96, 201–210.

    Google Scholar 

  • Klepper, S., & Leamer, E. E. (1984). Consistent sets of regressions with errors in all variables.Econometrica, 52, 163–183.

    Google Scholar 

  • Krane, W. R., & McDonald, R. P. (1978). Scale invariance and the factor analysis of correlation matrices.British Journal of Mathematical and Statistical Psychology, 31, 218–228.

    Google Scholar 

  • Krishnaiah, P. R., & Lee, J. C. (1974). On covariance structures.Sankhya, 38, 357–371.

    Google Scholar 

  • Lawley, D. N. (1940). The estimation of factor loadings by the method of maximum likelihood.Proceedings of the Royal Society of Edinburgh, A60, 64–82.

    Google Scholar 

  • Lawley, D. N. (1958). Estimation in factor analysis under various initial assumptions.British Journal of Statistical Psychology, 11, 1–12.

    Google Scholar 

  • Lawley, D. N. (1967). Some new results in maximum likelihood factor analysis.Proceedings of the Royal Society of Edinburgh, A67, 256–264.

    Google Scholar 

  • Lee, S.-Y. (1981). A Bayesian approach to confirmatory factor analysis.Psychometrika, 46, 153–160.

    Google Scholar 

  • Lee, S.-Y. (1985a). Analysis of covariance and correlation structures.Computational Statistics & Data Analysis, 2, 279–295.

    Google Scholar 

  • Lee, S.-Y. (1985b). On testing functional constraints in structural equation models.Biometrika, 72, 125–131.

    Google Scholar 

  • Lee, S.-Y., & Bentler, P. M. (1980). Some asymptotic properties of constrained generalized least squares estimation in covariance structure models.South African Statistical Journal, 14, 121–136.

    Google Scholar 

  • Lee, S.-Y., & Jennrich, R. I. (1979). A study of algorithms for covariance structure analysis with specific comparisons using factor analysis.Psychometrika, 44, 99–113.

    Google Scholar 

  • Lee, S.-Y., & Tsui, K. L. (1982). Covariance structure analysis in several populations.Psychometrika, 47, 297–308.

    Google Scholar 

  • Levin, J. (1966). Simultaneous factor analysis of several Gramian matrices.Psychometrika, 31, 413–419.

    Google Scholar 

  • Lockhart, R. S. (1967). Asymptotic sampling variances for factor analytic models identified by specified zero parameters.Psychometrika, 32, 265–277.

    Google Scholar 

  • Luenberger, D. G. (1984).Linear and nonlinear programming (2nd ed.). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Madansky, A. (1959). The fitting of straight lines when both variables are subject to error.Journal of the American Statistical Association, 54, 173–205.

    Google Scholar 

  • McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the reticular action model for moment structures.British Journal of Mathematical and Statistical Psychology, 37, 234–251.

    Google Scholar 

  • McDonald, R. P. (1962). A general approach to nonlinear factor analysis.Psychometrika, 27, 397–415.

    Google Scholar 

  • McDonald, R. P. (1970a). The theoretical foundations of principal factor analysis, canonical factor analysis, and alpha factor analysis.British Journal of Mathematical and Statistical Psychology, 23, 1–21.

    Google Scholar 

  • McDonald, R. P. (1970b). Three common factor models for groups of variables.Psychometrika, 35, 111–128.

    Google Scholar 

  • McDonald, R. P. (1978). A simple comprehensive model for the analysis of covariance structures.British Journal of Mathematical and Statistical Psychology, 31, 59–72.

    Google Scholar 

  • McDonald, R. P. (1980). A simple comprehensive model for the analysis of covariance structures: Some remarks on applications.British Journal of Mathematical and Statistical Psychology, 33, 161–183.

    Google Scholar 

  • McGaw, B., & Jöreskog, K. G. (1971). Factorial invariance of ability measures in groups differing in intelligence and socioeconomic status.British Journal of Mathematical and Statistical Psychology, 24, 154–168.

    Google Scholar 

  • Meredith, W. (1964a). Canonical correlations with fallible data.Psychometrika, 29, 55–65.

    Google Scholar 

  • Meredith, W. (1964b). Notes on factorial invariance.Psychometrika, 29, 177–185.

    Google Scholar 

  • Meredith, W. (1965). A method for studying differences between groups.Psychometrika, 30, 15–29.

    Google Scholar 

  • Mislevy, R. J. (1984). Estimating latent distributions.Psychometrika, 49, 359–381.

    Google Scholar 

  • Mooijaart, A. (1983). Two kinds of factor analysis for ordered categorical variables.Multivariate Behavioral Research, 18, 423–441.

    Google Scholar 

  • Mooijaart, A. (1985a). Factor analysis for non-normal variables.Psychometrika, 50, 323–342.

    Google Scholar 

  • Mooijaart, A. (1985b). A note on computational efficiency in asymptotically distribution-free correlational methods.British Journal of Mathematical and Statistical Psychology, 38, 112–115.

    Google Scholar 

  • Mooijaart, A., & Bentler, P. M. (in press-a). The weight matrix in asymptotic distribution-free methods.British Journal of Mathematical and Statistical Psychology.

  • Mooijaart, A., & Bentler, P. M. (in press-b). Random polynomial factor analysis.Proceedings of Fourth International Symposium: Data Analysis and Informatics.

  • Mosier, C. I. (1939). Determining a simple structure when loadings for certain tests are known.Psychometrika, 4, 149–162.

    Google Scholar 

  • Muirhead, R. J. (1982).Aspects of multivariate statistical theory. New York: Wiley.

    Google Scholar 

  • Muirhead, R. J., & Waternaux, C. (1980). Asymptotic distributions in canonical correlation analysis and other multivariate procedures for nonnormal populations.Biometrika, 67, 31–43.

    Google Scholar 

  • Muthén, B. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators.Psychometrika, 49, 115–132.

    Google Scholar 

  • Please, N. W. (1973). Comparison of factor loadings in different populations.British Journal of Mathematical and Statistical Psychology, 26, 61–89.

    Google Scholar 

  • Pratt, J. W., & Schlaifer, R. (1984). On the nature and discovery of structure (with comments).Journal of the American Statistical Association, 79, 9–21.

    Google Scholar 

  • Ramsey, J. O. (1975). Solving implicit equations in psychometric data analysis.Psychometrika, 40, 337–360.

    Google Scholar 

  • Ramsey, J. O. (1977). Maximum likelihood estimation in multidimensional scaling.Psychometrika, 42, 241–246.

    Google Scholar 

  • Rasch, G. (1953). On simultaneous factor analysis in several populations. InUppsala symposium on psychological factor analysis. Uppsala: Almqvist & Wiksell.

    Google Scholar 

  • Rindskopf, D. (1984). Structural equation models: Empirical identification, Heywood cases, and related problems.Sociological Methods and Research, 13, 109–119.

    Google Scholar 

  • Robinson, P. M. (1977). The estimation of a multivariate linear relation.Journal of Multivariate Analysis, 7, 409–423.

    Google Scholar 

  • Roff, M. (1936). Some properties of the communality in multiple factor theory.Psychometrika, 1(2), 1–6.

    Google Scholar 

  • Rothenberg, T. J. (1984). Approximating the distributions of econometric estimators and test statistics. In A. Griliches & M. D. Intriligator (Eds.),Handbook of econometrics, Vol. 2 (pp. 881–935). Amsterdam: North-Holland.

    Google Scholar 

  • Satorra, A., & Saris, W. (1985). Power of the likelihood ratio test in covariance structure analysis.Psychometrika, 50, 83–90.

    Google Scholar 

  • Schmid, J., & Leiman, J. (1957). The development of hierarchical factor solutions.Psychometrika, 22, 53–61.

    Google Scholar 

  • Shapiro, A. (1983). Asymptotic distribution theory in the analysis of covariance structures.South African Statistical Journal, 17, 33–81.

    Google Scholar 

  • Shapiro, A. (1985). Asymptotic distribution of test statistics in the analysis of moment structures under inequality constraints.Biometrika, 72, 133–144.

    Google Scholar 

  • Simon, H. A. (1954). Spurious correlation: A causal interpretation.Journal of the American Statistical Association, 49, 467–479.

    Google Scholar 

  • Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural models. In S. Leinhardt (Ed.),Sociological methodology 1982 (pp. 290–313). San Francisco: Jossey-Bass.

    Google Scholar 

  • Sörbom, D. (1974). A general method for studying differences in factor means and factor structure between groups.British Journal of Mathematical and Statistical Psychology, 27, 229–239.

    Google Scholar 

  • Sörbom, D. (1978). An alternative to the methodology for analysis of covariance.Psychometrika, 43, 381–396.

    Google Scholar 

  • Sörbom, D. (1982). Structural equation models with structured means. In K. G. Jöreskog & H. Wold (Eds.),Systems under indirect observation (pp. 183–195). Amsterdam: North-Holland.

    Google Scholar 

  • Spearman, C. (1904). “General intelligence” objectively determined and measured.American Journal of Psychology, 15, 201–292.

    Google Scholar 

  • Srivastava, J. N. (1966). On testing hypotheses regarding a class of covariance structures.Psychometrika, 31, 147–164.

    Google Scholar 

  • Steiger, J. H., & Browne, M. W. (1984). The comparison of interdependent correlations between optimal linear composites.Psychometrika, 49, 11–24.

    Google Scholar 

  • Steiger, J. H., & Hakstian, A. R. (1982). The asymptotic distribution of elements of a correlation matrix: Theory and application.British Journal of Mathematical and Statistical Psychology, 35, 208–215.

    Google Scholar 

  • Stroud, T. W. F. (1974). Comparing regressions when measurement error variances are known.Psychometrika, 39, 53–68.

    Google Scholar 

  • Swain, A. J. (1975). A class of factor analytic estimation procedures with common asymptotic sampling properties.Psychometrika, 40, 315–335.

    Google Scholar 

  • Tanaka, J. S. (1984).Some results on the estimation of covariance structure models. Unpublished doctoral dissertation, University of California, Los Angeles.

    Google Scholar 

  • Tanaka, J. S., & Bentler, P. M. (1983). Factor invariance of premorbid social competence across multiple populations of schizophrenics.Multivariate Behavioral Research, 18, 135–146.

    Google Scholar 

  • Tanaka, J. S., & Bentler, P. M. (1985). Quasi-likelihood estimation in asymptotically efficient covariance structure models.1984 Proceedings of the American Statistical Association, Social Statistics Section (pp. 658–662).

  • Thurstone, L. L. (1944). A multiple group method of factoring the correlation matrix.Psychometrika, 10, 73–80.

    Google Scholar 

  • Thurstone, L. L. (1947).Multiple factor analysis. Chicago: Chicago University Press.

    Google Scholar 

  • Tucker, L. R. (1955). The objective definition of simple structure in linear factor analysis.Psychometrika, 20, 209–225.

    Google Scholar 

  • Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis.Psychometrika, 31, 279–311.

    Google Scholar 

  • Tukey, J. W. (1954). Causation, regression and path analysis. In O. Kempthorne, T. A. Bancroft, J. W. Gowen, & J. L. Lush (Eds.),Statistics and mathematics in biology (pp. 35–66). Ames, IA: Iowa State College Press.

    Google Scholar 

  • Tukey, J. W. (1977).Exploratory data analysis. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Tyler, D. E. (1982). Radial estimates and the test for sphericity.Biometrika, 69, 429–436.

    Google Scholar 

  • Tyler, D. E. (1983). Robustness and efficiency properties of scatter matrices.Biometrika, 70, 411–420.

    Google Scholar 

  • Van Praag, B. M. S., Dijkstra, T. K., & Van Velzen, J. (1985). Least squares theory based on general distributional assumptions with an application to the incomplete observations problem.Psychometrika, 50, 25–36.

    Google Scholar 

  • Votaw, D. F. (1948). Testing compound symmetry in a normal multivariate population.Annals of Mathematical Statistics, 19, 189–196.

    Google Scholar 

  • Werts, C. E., & Linn, R. L. (1970). Path analysis: Psychological examples.Psychological Bulletin, 74, 193–212.

    Google Scholar 

  • Werts, C. E., Rock, D. A., Linn, R. L., & Jöreskog, K. G. (1976). Comparison of correlations, variances, covariances, and regression weights with or without measurement error.Psychological Bulletin, 83, 1007–1013.

    Google Scholar 

  • White, H. (1982). Maximum likelihood estimation of misspecified models.Econometrica, 50, 1–25.

    Google Scholar 

  • Wiley, D. E. (1973). The identification problem for structural equation models with unmeasured variables. In A. S. Goldberger & O. D. Duncan (Eds.),Structural equation models in the social sciences (pp. 69–83). New York: Seminar.

    Google Scholar 

  • Wiley, D. E., Schmidt, W. H., & Bramble, W. J. (1973). Studies of a class of covariance structure models.Journal of the American Statistical Association, 68, 317–323.

    Google Scholar 

  • Wilks, S. S. (1946). Sample criteria for testing equality of means, equality of variances, and equality of covariances in a normal multivariate distribution.Annals of Mathematical Statistics, 17, 257–281.

    Google Scholar 

  • Wold, H. (1979). Model construction and evaluation when theoretical knowledge is scarce: Theory and application of partial least squares. In J. Kmenta & J. B. Ramsey (Eds.),Evaluation of econometric models (pp. 47–74). New York: Academic.

    Google Scholar 

  • Woodward, J. A., & Bentler, P. M. (1978). A statistical lower-bound to population reliability.Psychological Bulletin, 85, 1323–1326.

    Google Scholar 

  • Wright, S. (1934). The method of path coefficients.Annals of Mathematical Statistics, 5, 161–215.

    Google Scholar 

  • Wright, S. (1960). Path coefficients and path regressions: Alternative or complementary concepts?Biometrics, 16, 189–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This review was supported in part by USPHS grants DA00017 and DA01070.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bentler, P.M. Structural modeling and psychometrika: An historical perspective on growth and achievements. Psychometrika 51, 35–51 (1986). https://doi.org/10.1007/BF02293997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02293997

Keywords

Navigation