Skip to main content

Advertisement

Log in

A review on arsenic removal from wastewater using carbon nanotube and graphene-based nanomaterials as adsorbents

  • Mini-Reviews
  • Published:
Nanotechnology for Environmental Engineering Aims and scope Submit manuscript

Abstract

Arsenic being the twentieth most abundant metalloid in the earth’s crust is one of the most hazardous elements both for humans and animals. Arsenic results from both man-made and natural activities pose a major health hazard for around 150 million people across the globe due to its carcinogenic properties. Thus, the review article presented the toxic harmful impact of arsenic on the environment, sources of arsenic contamination, and several removal techniques that are being studied and developed by scientists in order to keep the arsenic concentration minimum as prescribed by the World Health Organization maximum contamination level, and finally, what the future holds for arsenic remediation technologies. Adsorption is widely applied to remove arsenic from wastewater. This review will give an insight into the current status of research on arsenic removal from wastewater, applications of carbon nanomaterials, different types of functionalized carbon nanotubes, graphene, graphene oxide, and their adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

Al:

Aluminum

As:

Arsenic

Cd:

Cadmium

Ce:

Cerium

CF-CNTs:

Ce–Fe oxide-decorated multiwalled carbon nanotubes

CNT:

Carbon nanotube

Co:

Cobalt

Cr:

Chromium

CuO:

Copper oxide

DNA:

Deoxyribonucleic acid

FAH-RGO/SA:

Fe-Al hydroxide coated with sodium alginate

Fe:

Iron

Fe3O4 :

Iron oxide

GFeN:

Iron–GO nanohybrid adsorbents

GNP:

Graphene nanoplatelets

GO:

Graphene oxide

HA:

Humic acid

HCO:

Hydrous cerium oxide

Hg:

Mercury

IARC:

International Agency for Research on Cancer

LDH:

Layered double hydroxides

MCL:

Maximum contaminant Level

MGL:

Magnetite–graphene–LDH composites

MnO2 :

Manganese oxide

M-OH:

Metal-hydroxyl

MWCNT:

Multiwall carbon nanotube

NaOH:

Sodium hydroxide

Pb:

Lead

RGO:

Reduced graphene oxide

RNA:

Ribonucleic acid

SWCNT:

Single-wall carbon nanotube

Th:

Thorium

TiO2 :

Titanium dioxide

U:

Uranium

USEPA:

United States Environmental Protection Agency

WHO:

World Health Organization

ZCNT:

Zerovalent iron-based carbon nanotube

ZrO:

Zirconium oxide

ZrO2 :

Zirconium dioxide

ZVI:

Zerovalent iron

References

  1. Mohan D, Pittman JCU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006

    Article  Google Scholar 

  2. Singh R, Singh S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–270. https://doi.org/10.1016/j.ecoenv.2014.10.009

    Article  Google Scholar 

  3. Kabiraj A, Laha A, Panja AS, Bandopadhyay R (2023) In silico comparative structural and functional analysis of arsenite methyltransferase from bacteria, fungi, fishes, birds, and mammals. J Genet Eng Biotechnol 21:1–11. https://doi.org/10.1186/s43141-023-00522-9

    Article  Google Scholar 

  4. Banik D, Manna SK, Mahapatra AK (2021) Recent development of chromogenic and fluorogenic chemosensors for the detection of arsenic species: environmental and biological applications. Spectrochim Acta Part A Mol Biomol Spectroscopy 246:119047. https://doi.org/10.1016/j.saa.2020.119047

  5. Basu A, Saha D, Saha R, Ghosh T, Saha B (2014) A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Res Chem Intermed 40:447–485. https://doi.org/10.1007/s11164-012-1000-4

    Article  Google Scholar 

  6. Kobya M, Soltani RDC, Omwene PI, Khataee A (2020) A review on decontamination of arsenic-contained water by electrocoagulation: reactor configurations and operating cost along with removal mechanisms. Environ Technol Innov 17:100519. https://doi.org/10.1016/j.eti.2019.100519

  7. Mandal P, Dubey BK, Gupta AK (2017) Review on landfill leachate treatment by electrochemical oxidation: drawbacks, challenges and future scope. J Waste Manag 69:250–273. https://doi.org/10.1016/j.wasman.2017.08.034

    Article  Google Scholar 

  8. Kanel SR, Das TK, Varma RS, Kurwadkar S, Chakraborty S, Joshi TP, Bezbaruah AN, Nadagouda MN (2023) Arsenic contamination in groundwater: geochemical basis of treatment technologies. ACS Environ Au 3:135–152. https://doi.org/10.1021/acsenvironau.2c00053

    Article  Google Scholar 

  9. Cancer IAfRo, Cancer IAfRo (1991) Occupational exposures in insecticide application, and some pesticides. IARC monographs on the evaluation of carcinogenic risks to humans, p 53

  10. Shahid M, Imran M, Khalid S, Murtaza B, Niazi NK, Zhang Y, Hussain I, Arsenic environmental contamination status in South Asia. In: Arsenic in drinking water and food. 2020, Springer, pp 13–39. https://doi.org/10.1007/978-981-13-8587-2_2

  11. Saha J, Dikshit A, Bandyopadhyay M, Saha K (1999) A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol 29:281–313. https://doi.org/10.1080/10643389991259227

    Article  Google Scholar 

  12. Zeng Q, Zhang A (2020) Assessing potential mechanisms of arsenic-induced skin lesions and cancers: human and in vitro evidence. Environ Pollut 260:113919. https://doi.org/10.1016/j.envpol.2020.113919

  13. Mateen FJ, Grau-Perez M, Pollak JS, Moon KA, Howard BV, Umans JG, Best LG, Francesconi KA, Goessler W, Crainiceanu C (2017) Chronic arsenic exposure and risk of carotid artery disease: the strong heart study. Environ Res 157:127–134. https://doi.org/10.1016/j.envres.2017.05.020

    Article  Google Scholar 

  14. Moon K, Guallar E, Navas-Acien A (2012) Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep 14:542–555. https://doi.org/10.1007/s11883-012-0280-x

    Article  Google Scholar 

  15. Sierra H, Cordova M, Chen C-SJ, Rajadhyaksha M (2015) Confocal imaging-guided laser ablation of basal cell carcinomas: an ex vivo study. J Invest Dermatol 135:612. https://doi.org/10.1038/jid.2014.371

    Article  Google Scholar 

  16. Renu K, Madhyastha H, Madhyastha R, Maruyama M, Vinayagam S, Gopalakrishnan AV (2018) Review on molecular and biochemical insights of arsenic-mediated male reproductive toxicity. Life Sci 212:37–58. https://doi.org/10.1016/j.lfs.2018.09.045

    Article  Google Scholar 

  17. Powers M, Sanchez TR, Grau-Perez M, Yeh F, Francesconi KA, Goessler W, George CM, Heaney C, Best LG, Umans JG (2019) Low-moderate arsenic exposure and respiratory in American Indian communities in the Strong Heart Study. Environ Health 18:1–12. https://doi.org/10.1186/s12940-019-0539-6

    Article  Google Scholar 

  18. Sanchez TR, Powers M, Perzanowski M, George CM, Graziano JH, Navas-Acien A (2018) A meta-analysis of arsenic exposure and lung function: is there evidence of restrictive or obstructive lung disease? Curr Environ Health Rep 5:244–254. https://doi.org/10.1007/s40572-018-0192-1

    Article  Google Scholar 

  19. Bhattacharya P, Polya D, Jovanovic D (2017)Best practice guide on the control of arsenic in drinking water. IWA Publishing.

  20. Meena M, Singh A, Prasad L, Islam A, Meena M, Dotaniya M, Singh H, Yadav B (2020) Impact of arsenic-polluted groundwater on soil and produce quality: a food chain study. Environ Monit Assess 192:1–8. https://doi.org/10.1007/s10661-020-08770-9

    Article  Google Scholar 

  21. Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321. https://doi.org/10.1007/s10311-011-0313-7

    Article  Google Scholar 

  22. Sinha D, Datta S, Mishra R, Agarwal P, Kumari T, Adeyemi SB, Kumar Maurya A, Ganguly S, Atique U, Seal S, Kumari Gupta L (2023) Negative impacts of arsenic on plants and mitigation strategies. Plants 12:1815. https://doi.org/10.3390/plants12091815

    Article  Google Scholar 

  23. Ejaz F, Yousaf MTB, Nawaz MF, Niazi NK, Gul S, Ahmed I, Asif M, Bibi I (2022) Phytoremedial potential of perennial woody vegetation under arsenic contaminated conditions in diverse environments. In: Global Arsenic Hazard: Ecotoxicology and Remediation. Springer. pp 355–373. https://doi.org/10.1007/978-3-031-16360-9_17

  24. Borba R, Figueiredo B, Rawlins B, Matschullat J (2003) Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environ Geol 44:39–52. https://doi.org/10.1007/s00254-002-0733-6

    Article  Google Scholar 

  25. Charlet L, Chakraborty S, Appelo C, Roman-Ross G, Nath B, Ansari A, Lanson M, Chatterjee D, Mallik SB (2007) Chemodynamics of an arsenic “hotspot” in a West Bengal aquifer: a field and reactive transport modeling study. J Appl Geochem 22:1273–1292. https://doi.org/10.1016/j.apgeochem.2006.12.022

    Article  Google Scholar 

  26. Lima IQ, Ramos OER, Munoz MO, Tapia MIC, Aguirre JQ, Ahmad A, Maity JP, Islam MT, Bhattacharya P (2021) Geochemical mechanisms of natural arsenic mobility in the hydrogeologic system of Lower Katari Basin, Bolivian Altiplano. J Hydrol 594:125778. https://doi.org/10.1016/j.jhydrol.2020.125778

  27. Welch AH, Lico MS, Hughes JL (1988) Arsenic in ground water of the western United States. Groundwater 26:333–347. https://doi.org/10.1111/j.1745-6584.1988.tb00397.x

    Article  Google Scholar 

  28. Bissen M, Frimmel FH (2003) Arsenic—a Review. Part I: occurrence, toxicity, speciation, Mobility. Acta Hydrochim Hydrobiol 31:9–18. https://doi.org/10.1002/aheh.200390025

    Article  Google Scholar 

  29. Chen H, Liang X, Gong X, Reinfelder JR, Chen H, Sun C, Liu X, Zhang S, Li F, Liu C (2021) Comparative physiological and transcriptomic analyses illuminate common mechanisms by which silicon alleviates cadmium and arsenic toxicity in rice seedlings. J Environ Sci 109:88–101. https://doi.org/10.1016/j.jes.2021.02.030

    Article  Google Scholar 

  30. Oberoi S, Barchowsky A, Wu F (2014) The global burden of disease for skin, lung, and bladder cancer caused by arsenic in food. Cancer Epidemiol Biomarkers Prev 23:1187–1194. https://doi.org/10.1158/1055-9965.EPI-13-1317

    Article  Google Scholar 

  31. Rathi BS, Kumar PS (2021) A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system. J Hazard Mater 418:126299. https://doi.org/10.1016/j.jhazmat.2021.126299

  32. Campbell RC, Stephens WE, Finch AA, Geraki K (2014) Controls on the valence species of arsenic in tobacco smoke: XANES investigation with implications for health and regulation. Environ Sci Technol 48:3449–3456. https://doi.org/10.1021/es4039243

    Article  Google Scholar 

  33. Rasheed T, Kausar F, Rizwan K, Adeel M, Sher F, Alwadai N, Alshammari FH (2022) Two dimensional MXenes as emerging paradigm for adsorptive removal of toxic metallic pollutants from wastewater. Chemosphere 287:132319. https://doi.org/10.1016/j.chemosphere.2021.132319

  34. Ayub A, Srithilat K, Fatima I, Panduro-Tenazoa NM, Ahmed I, Akhtar MU, Shabbir W, Ahmad K, Muhammad A (2022) Arsenic in drinking water: overview of removal strategies and role of chitosan biosorbent for its remediation. Environ Sci Pollut Res 29:64312–64344. https://doi.org/10.1007/s11356-022-21988-z

    Article  Google Scholar 

  35. Weerasundara L, Ok Y-S, Bundschuh J (2021) Selective removal of arsenic in water: A critical review. Environ Pollut 268:115668. https://doi.org/10.1016/j.envpol.2020.115668

  36. Kumar S, Nair RR, Pillai PB, Gupta SN, Iyengar M, Sood AK (2014) Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6:17426–17436. https://doi.org/10.1021/am504826q

    Article  Google Scholar 

  37. Dutt MA, Hanif MA, Nadeem F, Bhatti HN (2020) A review of advances in engineered composite materials popular for wastewater treatment. J Environ Chem Eng 8:104073. https://doi.org/10.1016/j.jece.2020.104073

  38. Baloyi J, Ntho T, Moma J (2018) Synthesis and application of pillared clay heterogeneous catalysts for wastewater treatment: a review. RSC Adv 8:5197–5211. https://doi.org/10.1039/C7RA12924F

    Article  Google Scholar 

  39. Cho D-W, Jeon B-H, Chon C-M, Kim Y, Schwartz FW, Lee E-S, Song H (2012) A novel chitosan/clay/magnetite composite for adsorption of Cu (II) and As (V). Chem Eng J 200:654–662. https://doi.org/10.1016/j.cej.2012.06.126

    Article  Google Scholar 

  40. Aredes S, Klein B, Pawlik M (2013) The removal of arsenic from water using natural iron oxide minerals. J Clean Prod 60:71–76. https://doi.org/10.1016/j.jclepro.2012.10.035

    Article  Google Scholar 

  41. Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2011) Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination 281:93–99. https://doi.org/10.1016/j.desal.2011.07.046

    Article  Google Scholar 

  42. Liu X, Ma R, Wang X, Ma Y, Yang Y, Zhuang L, Zhang S, Jehan R, Chen J, Wang X (2019) Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environ Pollut 252:62–73. https://doi.org/10.1016/j.envpol.2019.05.050

    Article  Google Scholar 

  43. Qiu Z, Shi S, Qiu F, Xu X, Yang D, Zhang T (2020) Enhanced As (Ш) removal from aqueous solutions by recyclable Cu@ MNM composite membranes via synergistic oxidation and absorption. Water Res 168:115147. https://doi.org/10.1016/j.watres.2019.115147

  44. Alipour A, Zarinabadi S, Azimi A, Mirzaei MJ (2020) Adsorptive removal of Pb (II) ions from aqueous solutions by thiourea-functionalized magnetic ZnO/nanocellulose composite: optimization by response surface methodology (RSM). Int J Biol Macromol 151:124–135. https://doi.org/10.1016/j.ijbiomac.2020.02.109

    Article  Google Scholar 

  45. Zhang S, Li X-y, Chen JP (2010) Preparation and evaluation of a magnetite-doped activated carbon fiber for enhanced arsenic removal. Carbon 48:60–67. https://doi.org/10.1016/j.carbon.2009.08.030

    Article  Google Scholar 

  46. Islam A, Teo SH, Ahmed MT, Khandaker S, Ibrahim ML, Vo D-VN, Abdulkreem-Alsultan G, Khan AS (2021) Novel micro-structured carbon-based adsorbents for notorious arsenic removal from wastewater. Chemosphere 272:129653. https://doi.org/10.1016/j.chemosphere.2021.129653

  47. Liu D, Gu W, Zhou L, Wang L, Zhang J, Liu Y, Lei J (2022) Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem Eng J 427:131503. https://doi.org/10.1016/j.cej.2021.131503

  48. Hoang AT, Nižetić S, Cheng CK, Luque R, Thomas S, Banh TL, Nguyen XP (2022) Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere 287:131959. https://doi.org/10.1016/j.chemosphere.2021.131959

  49. Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290. https://doi.org/10.1016/j.jhazmat.2011.10.041

    Article  Google Scholar 

  50. Yu F, Ma J, Wu Y (2011) Adsorption of toluene, ethylbenzene and m-xylene on multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. J Hazard Mater 192:1370–1379. https://doi.org/10.1016/j.jhazmat.2011.06.048

    Article  Google Scholar 

  51. Yang X, Wan Y, Zheng Y, He F, Yu Z, Huang J, Wang H, Ok YS, Jiang Y, Gao B (2019) Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chem Eng J 366:608–621. https://doi.org/10.1016/j.cej.2019.02.119

    Article  Google Scholar 

  52. Saleh TA, Agarwal S, Gupta VK (2011) Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl Catal B Environ 106:46–53. https://doi.org/10.1016/j.apcatb.2011.05.003

    Article  Google Scholar 

  53. Ntim SA, Mitra S (2012) Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. J Colloid Interface Sci 375:154–159. https://doi.org/10.1016/j.jcis.2012.01.063

    Article  Google Scholar 

  54. Razaq A, Bibi F, Zheng X, Papadakis R, Jafri SHM, Li H (2022) Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: from fabrication to applications. Materials 15:1012. https://doi.org/10.3390/ma15031012

    Article  Google Scholar 

  55. Asghar F, Shakoor B, Fatima S, Munir S, Razzaq H, Naheed S, Butler IS (2022) Fabrication and prospective applications of graphene oxide-modified nanocomposites for wastewater remediation. RSC Adv 12:11750–11768. https://doi.org/10.1039/D2RA00271J

    Article  Google Scholar 

  56. Wen T, Wu X, Tan X, Wang X, Xu A (2013) One-pot synthesis of water-swellable Mg–Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As (V) from aqueous solutions. ACS Appl Mater Interfaces 5:3304–3311. https://doi.org/10.1021/am4003556

    Article  Google Scholar 

  57. Guo X, Du B, Wei Q, Yang J, Hu L, Yan L, Xu W (2014) Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from contaminated water. J Hazard Mater 278:211–220. https://doi.org/10.1016/j.jhazmat.2014.05.075

    Article  Google Scholar 

  58. Peng W, Li H, Liu Y, Song S (2016) Comparison of Pb (II) adsorption onto graphene oxide prepared from natural graphites: Diagramming the Pb (II) adsorption sites. Appl Surf Sci 364:620–627. https://doi.org/10.1016/j.apsusc.2015.12.208

    Article  Google Scholar 

  59. Ali I, Mbianda X, Burakov A, Galunin E, Burakova I, Mkrtchyan E, Tkachev A, Grachev V (2019) Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ Int 127:160–180. https://doi.org/10.1016/j.envint.2019.03.029

    Article  Google Scholar 

  60. Velusamy S, Roy A, Sundaram S, Kumar Mallick T (2021) A review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. Chem Rec 21:1570–1610. https://doi.org/10.1002/tcr.202000153

    Article  Google Scholar 

  61. Yang X, Xia L, Song S (2017) Arsenic adsorption from water using graphene-based materials as adsorbents: a critical review. Surf Rev Lett 24:1730001. https://doi.org/10.1142/S0218625X17300015

    Article  Google Scholar 

  62. Kong L, Wang Y, Andrews CB, Zheng C (2022) One-step construction of hierarchical porous channels on electrospun MOF/polymer/graphene oxide composite nanofibers for effective arsenate removal from water. Chem Eng J 435:134830. https://doi.org/10.1016/j.cej.2022.134830

  63. Bobb JA, Awad FS, Moussa S, El-Shall MS (2020) Laser synthesis of magnetite-partially reduced graphene oxide nanocomposites for arsenate removal from water. J Mater Sci 55:5351–5363. https://doi.org/10.1007/s10853-020-04363-6

    Article  Google Scholar 

  64. Li L, Zhou G, Weng Z, Shan X-Y, Li F, Cheng HM (2014) Monolithic Fe2O3/graphene hybrid for highly efficient lithium storage and arsenic removal. Carbon 67:500–507. https://doi.org/10.1016/j.carbon.2013.10.022

    Article  Google Scholar 

  65. Ali I, Suhail M, López EC, Khattab RA, Albishri HM (2022) Advances in graphene-based materials for the treatment of water. Arab J Geosci 15:521. https://doi.org/10.1007/s12517-022-09790-0

    Article  Google Scholar 

  66. Ranjan R, Bajpai V (2021) Graphene-based metal matrix nanocomposites: Recent development and challenges. J Compos Mater 55:2369–2413. https://doi.org/10.1177/0021998320988566

    Article  Google Scholar 

  67. Saravanan A, Kumar PS, Srinivasan S, Jeevanantham S, Vishnu M, Amith KV, Sruthi R, Saravanan R, Vo DVN (2022) Insights on synthesis and applications of graphene-based materials in wastewater treatment: a review. Chemosphere 134284. https://doi.org/10.1016/j.chemosphere.2022.134284

  68. Nriagu J, Bhattacharya P, Mukherjee A, Bundschuh J, Zevenhoven R, Loeppert R (2007) Arsenic in soil and groundwater: an overview. Trace Metals Other Contamin Environ 9:3–60. https://doi.org/10.1016/S1875-1121(06)09001-8

    Article  Google Scholar 

  69. Chakraborti D, Rahman MM, Das B, Murrill M, Dey S, Mukherjee SC, Dhar RK, Biswas BK, Chowdhury UK, Roy S (2010) Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res 44:5789–5802. https://doi.org/10.1016/j.watres.2010.06.051

    Article  Google Scholar 

  70. Gunduz O, Simsek C, Hasozbek A (2010) Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water Air Soil Pollut 205:43–62. https://doi.org/10.1007/s11270-009-0055-3

    Article  Google Scholar 

  71. Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, Lodh D, Rahman MM, Chakraborti D (2006) Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr 24:142–163. http://www.jstor.org/stable/23499353.

  72. Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean J-S, Liu C-W, López D, Armienta MA, Guilherme LR (2012) One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Sci Total Environ 429:2–35. https://doi.org/10.1016/j.scitotenv.2011.06.024

    Article  Google Scholar 

  73. Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2145. https://doi.org/10.1126/science.1072375

    Article  Google Scholar 

  74. Sthiannopkao S, Kim K, Sotham S, Choup S (2008) Arsenic and manganese in tube well waters of Prey Veng and Kandal Provinces, Cambodia. Appl Geochem 23:1086–1093. https://doi.org/10.1016/j.apgeochem.2008.01.001

    Article  Google Scholar 

  75. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. https://doi.org/10.1016/S0883-2927(02)00018-5

    Article  Google Scholar 

  76. Das S, Jean J-S, Kar S (2013) Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils, Central India. Ecotoxicol Environ Saf 92:252–257. https://doi.org/10.1016/j.ecoenv.2013.02.016

    Article  Google Scholar 

  77. Srivastava S, Sharma YK (2013) Arsenic occurrence and accumulation in soil and water of eastern districts of Uttar Pradesh, India. Environ Monit Assess 185:4995–5002. https://doi.org/10.1007/s10661-012-2920-6

    Article  Google Scholar 

  78. Rahman MM, Naidu R, Bhattacharya P (2009) Arsenic contamination in groundwater in the Southeast Asia region. Environ Geochem Health 31:9–21. https://doi.org/10.1007/s10653-008-9233-2

    Article  Google Scholar 

  79. Khan MA, Ho Y-S (2011) Arsenic in drinking water: a review on toxicological effects, mechanism of accumulation and remediation. Asian J Chem 23:1889

    Google Scholar 

  80. Twarakavi NKC, Kaluarachchi JJ (2006) Arsenic in the shallow ground waters of conterminous United States: Assessment, health risks, and costs for mcl compliance1. J Am Water Resour Assoc 42:275–294. https://doi.org/10.1111/j.1752-1688.2006.tb03838.x

    Article  Google Scholar 

  81. Apul OG, Karanfil T (2015) Adsorption of synthetic organic contaminants by carbon nanotubes: a critical review. Water Res 68:34–55. https://doi.org/10.1016/j.watres.2014.09.032

    Article  Google Scholar 

  82. Teow YH, Mohammad AW (2019) New generation nanomaterials for water desalination: A review. Desalination 451:2–17. https://doi.org/10.1016/j.desal.2017.11.041

    Article  Google Scholar 

  83. Chen G-C, Shan X-Q, Zhou Y-Q, Shen X-e, Huang H-L, Khan SUJJoHM, (2009) Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. J Hazard Mater 169:912–918. https://doi.org/10.1016/j.jhazmat.2009.04.034

    Article  Google Scholar 

  84. Yin Z, Cui C, Chen H, Duoni YuX, Qian W (2020) The application of carbon nanotube/graphene-based nanomaterials in wastewater treatment. Small 16:1902301. https://doi.org/10.1002/smll.201902301

    Article  Google Scholar 

  85. Chen B, Zhu Z, Ma J, Qiu Y, Chen J (2013) Surfactant assisted Ce–Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. J Mater Chem A 1:11355–11367. https://doi.org/10.1039/C3TA11827D

    Article  Google Scholar 

  86. Yu L, Ma Y, Ong CN, Xie J, Liu Y (2015) Rapid adsorption removal of arsenate by hydrous cerium oxide–graphene composite. RSC Adv 5:64983–64990. https://doi.org/10.1039/C5RA08922K

    Article  Google Scholar 

  87. Lal S, Singhal A, Kumari P (2020) Exploring carbonaceous nanomaterials for arsenic and chromium removal from wastewater. J Water Process Eng 36:101276. https://doi.org/10.1016/j.jwpe.2020.101276

  88. Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B Condens Matter 323:1–5. https://doi.org/10.1016/S0921-4526(02)00869-4

    Article  Google Scholar 

  89. Ma M-D, Wu H, Deng Z-Y, Zhao X (2018) Arsenic removal from water by nanometer iron oxide coated single-wall carbon nanotubes. J Mol Liq 259:369–375. https://doi.org/10.1016/j.molliq.2018.03.052

    Article  Google Scholar 

  90. Mishra AK, Ramaprabhu SJT (2010) Magnetite decorated multiwalled carbon nanotube based supercapacitor for arsenic removal and desalination of seawater. J Phys Chem C 114:2583–2590. https://doi.org/10.1021/jp911631w

    Article  Google Scholar 

  91. Sankararamakrishnan N, Gupta A, Vidyarthi SR (2014) Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. J Environ Chem Eng 2:802–810. https://doi.org/10.1016/j.jece.2014.02.010

    Article  Google Scholar 

  92. Wang P, Shi Q, Liang H, Steuerman DW, Stucky GD, Keller AA (2008) Enhanced environmental mobility of carbon nanotubes in the presence of humic acid and their removal from aqueous solution. Small 4:2166–2170. https://doi.org/10.1002/smll.200800753

    Article  Google Scholar 

  93. Liu H, Zuo K, Vecitis CD (2014) Titanium dioxide-coated carbon nanotube network filter for rapid and effective arsenic sorption. Environ Sci Technol 48:13871–13879. https://doi.org/10.1021/es502312t

    Article  Google Scholar 

  94. Luan H, Zhang Q, Cheng G-a, Huang H (2018) As (III) removal from drinking water by carbon nanotube membranes with magnetron-sputtered copper: performance and mechanisms. ACS Appl Mater Interfaces 10:20467–20477. https://doi.org/10.1021/acsami.8b04261

    Article  Google Scholar 

  95. Addo Ntim S, Mitra S (2011) Removal of trace arsenic to meet drinking water standards using iron oxide coated multiwall carbon nanotubes. J Chem Eng Data 56:2077–2083. https://doi.org/10.1021/je1010664

    Article  Google Scholar 

  96. Tawabini BS, Al-Khaldi SF, Khaled MM, Atieh MA (2011) Removal of arsenic from water by iron oxide nanoparticles impregnated on carbon nanotubes. J Environ Sci Health A 46:215–223. https://doi.org/10.1080/10934529.2011.535389

    Article  Google Scholar 

  97. Peng X, Luan Z, Ding J, Di Z, Li Y, Tian B (2005) Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59:399–403. https://doi.org/10.1016/j.matlet.2004.05.090

    Article  Google Scholar 

  98. Gupta AK, Deva D, Sharma A, Verma N (2010) Fe-grown carbon nanofibers for removal of arsenic (V) in wastewater. Ind Eng Chem Res 49:7074–7084. https://doi.org/10.1021/ie100392q

    Article  Google Scholar 

  99. Ma J, Zhu Z, Chen B, Yang M, Zhou H, Li C, Yu F, Chen J (2013) One-pot, large-scale synthesis of magnetic activated carbon nanotubes and their applications for arsenic removal. J Mater Chem A 1:4662–4666. https://doi.org/10.1039/C3TA10329C

    Article  Google Scholar 

  100. Addo Ntim S, Mitra S (2012) Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. J Colloid Interface Sci 375:154–159. https://doi.org/10.1016/j.jcis.2012.01.063

    Article  Google Scholar 

  101. Veličković Z, Vuković GD, Marinković AD, Moldovan M-S, Perić-Grujić AA, Uskoković PS, Ristić MĐ (2012) Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes. Chem Eng J 181–182:174–181. https://doi.org/10.1016/j.cej.2011.11.052

    Article  Google Scholar 

  102. Veličković ZS, Marinković AD, Bajić ZJ, Marković JM, Perić-Grujić AA, Uskokovic PS, Ristic MD (2013) Oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes for the separation of low concentration arsenate from water. Sep Sci Technol 48:2047–2058. https://doi.org/10.1080/01496395.2013.790446

    Article  Google Scholar 

  103. Sankararamakrishnan N, Chauhan D, Dwivedi J (2016) Synthesis of functionalized carbon nanotubes by floating catalytic chemical vapor deposition method and their sorption behavior toward arsenic. Chem Eng J 284:599–608. https://doi.org/10.1016/j.cej.2015.08.145

    Article  Google Scholar 

  104. Srivastava M, Srivastava A, Pandey S (2020) Suitability of graphene monolayer as sensor for carcinogenic heavy metals in water: a DFT investigation. Appl Surf Sci 517:146021. https://doi.org/10.1016/j.apsusc.2020.146021

  105. Das TK, Sakthivel TS, Jeyaranjan A, Seal S, Bezbaruah AN (2020) Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: removal mechanisms and potential applications. Chemosphere 253:126702. https://doi.org/10.1016/j.chemosphere.2020.126702

  106. Soni R, Shukla DP (2019) Synthesis of fly ash based zeolite-reduced graphene oxide composite and its evaluation as an adsorbent for arsenic removal. Chemosphere 219:504–509. https://doi.org/10.1016/j.chemosphere.2018.11.203

    Article  Google Scholar 

  107. Wu L-K, Wu H, Zhang H-B, Cao H-Z, Hou G-Y, Tang Y-P, Zheng G-Q (2018) Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water. Chem Eng J 334:1808–1819. https://doi.org/10.1016/j.cej.2017.11.096

    Article  Google Scholar 

  108. Wu K, Jing C, Zhang J, Liu T, Yang S, Wang W (2019) Magnetic Fe3O4@ CuO nanocomposite assembled on graphene oxide sheets for the enhanced removal of arsenic (III/V) from water. Appl Surf Sci 466:746–756. https://doi.org/10.1016/j.apsusc.2018.10.091

    Article  Google Scholar 

  109. Sherlala A, Raman A, Bello MM (2019) Synthesis and characterization of magnetic graphene oxide for arsenic removal from aqueous solution. Environ Technol 40:1508–1516. https://doi.org/10.1080/09593330.2018.1424259

    Article  Google Scholar 

  110. Sherlala A, Raman A, Bello MM, Buthiyappan A (2019) Adsorption of arsenic using chitosan magnetic graphene oxide nanocomposite. J Environ Manage 246:547–556. https://doi.org/10.1016/j.jenvman.2019.05.117

    Article  Google Scholar 

  111. Basu H, Singh S, Venkatesh M, Pimple MV, Singhal RK (2021) Graphene oxide-MnO2-goethite microsphere impregnated alginate: A novel hybrid nanosorbent for As (III) and As (V) removal from groundwater. J Water Process Eng 42:102129. https://doi.org/10.1016/j.jwpe.2021.102129

  112. Joya-Cárdenas DR, Rodríguez-Caicedo JP, Gallegos-Muñoz A, Zanor GA, Caycedo-García MS, Damian-Ascencio CE, Saldaña-Robles A (2022) Graphene-based adsorbents for arsenic, fluoride, and chromium adsorption: synthesis methods review. Nanomaterials 12:3942. https://doi.org/10.3390/nano12223942

    Article  Google Scholar 

  113. Su H, Ye Z, Hmidi N (2017) High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloid Surf A Physicochem Eng Aspects 522:161–172. https://doi.org/10.1016/j.colsurfa.2017.02.065

    Article  Google Scholar 

  114. Mishra AK, Ramaprabhu SJD (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45. https://doi.org/10.1016/j.desal.2011.01.038

    Article  Google Scholar 

  115. Gollavelli G, Chang CC, Engineering LYC (2013) Facile synthesis of smart magnetic graphene for safe drinking water: heavy metal removal and disinfection control. ACS Sustainable Chem Eng 1:462–472. https://doi.org/10.1021/sc300112z

    Article  Google Scholar 

  116. Zhu J, Sadu R, Wei S, Chen DH, Haldolaarachchige N, Luo Z, Gomes J, Young DP, Guo ZJEJoSSS, Technology, (2012) Magnetic graphene nanoplatelet composites toward arsenic removal. ECS J Solid State Sci Technol 1:M1–M5. https://doi.org/10.1149/2.010201jss

    Article  Google Scholar 

  117. Dubey SP, Nguyen TT, Kwon Y-N, Lee C (2015) Synthesis and characterization of metal-doped reduced graphene oxide composites, and their application in removal of Escherichia coli, arsenic and 4-nitrophenol. J Ind Eng Chem 29:282–288. https://doi.org/10.1016/j.jiec.2015.04.008

    Article  Google Scholar 

  118. Luo X, Wang C, Wang L, Deng F, Luo S, Tu X, Au C (2013) Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As (III) and As (V) from water. Chem Eng J 220:98–106. https://doi.org/10.1016/j.cej.2013.01.017

    Article  Google Scholar 

  119. Zhang K, Dwivedi V, Chi C, Wu J (2010) Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater 182:162–168. https://doi.org/10.1016/j.jhazmat.2010.06.010

    Article  Google Scholar 

  120. Sheng G, Li Y, Yang X, Ren X, Yang S, Hu J, Wang X (2012) Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Adv 2:12400–12407. https://doi.org/10.1039/C2RA21623J

    Article  Google Scholar 

  121. Yoon Y, Park WK, Hwang T-M, Yoon DH, Yang WS, Kang JW (2016) Comparative evaluation of magnetite–graphene oxide and magnetite-reduced graphene oxide composite for As (III) and As (V) removal. J Hazard Mater 304:196–204. https://doi.org/10.1016/j.jhazmat.2015.10.053

    Article  Google Scholar 

  122. Chandra V, Park J, Chun Y, Lee JW, Hwang IC, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986. https://doi.org/10.1021/nn1008897

    Article  Google Scholar 

  123. Chen M-L, Sun Y, Huo C-B, Liu C, Wang JH (2015) Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its proconcentration at ultra-trace level. Chemosphere 130:52–58. https://doi.org/10.1016/j.chemosphere.2015.02.046

    Article  Google Scholar 

  124. Wu XL, Wang L, Chen CL, Xu AW, Wang XK (2011) Water-dispersible magnetite-graphene-LDH composites for efficient arsenate removal. J Mater Chem 21:17353–17359. https://doi.org/10.1039/C1JM12678D

    Article  Google Scholar 

  125. Guo L, Ye P, Wang J, Fu F, Wu Z (2015) Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. J Hazard Mater 298:28–35. https://doi.org/10.1016/j.jhazmat.2015.05.011

    Article  Google Scholar 

  126. Vazquez-Jaime M, Arcibar-Orozco J, Damian-Ascencio C, Saldaña-Robles A, Martínez-Rosales M, Saldaña-Robles A, Cano-Andrade S (2020) Effective removal of arsenic from an aqueous solution by ferrihydrite/goethite graphene oxide composites using the modified Hummers method. J Environ Chem Eng 8:104416. https://doi.org/10.1016/j.jece.2020.104416

  127. Sharma M, Ramakrishnan S, Remanan S, Madras G, Bose S (2018) Nano tin ferrous oxide decorated graphene oxide sheets for efficient arsenic (III) removal. Nano-Struct Nano Objects 13:82–92. https://doi.org/10.1016/j.nanoso.2017.12.007

    Article  Google Scholar 

  128. Pervez MN, Wei Y, Sun P, Qu G, Naddeo V, Zhao Y (2021) α-FeOOH quantum dots impregnated graphene oxide hybrids enhanced arsenic adsorption: The mediation role of environmental organic ligands. Sci Total Environ 781:146726. https://doi.org/10.1016/j.scitotenv.2021.146726

  129. Sadeghi MH, Tofighy MA, Mohammadi T (2020) One-dimensional graphene for efficient aqueous heavy metal adsorption: Rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs). Chemosphere 253:126647. https://doi.org/10.1016/j.chemosphere.2020.126647

  130. Zhang M, Ma X, Li J, Huang R, Guo L, Zhang X, Fan Y, Xie X, Zeng G (2019) Enhanced removal of As (III) and As (V) from aqueous solution using ionic liquid-modified magnetic graphene oxide. Chemosphere 234:196–203. https://doi.org/10.1016/j.chemosphere.2019.06.057

    Article  Google Scholar 

  131. Priya VN, Rajkumar M, Mobika J, Sibi SL (2021) Alginate coated layered double hydroxide/reduced graphene oxide nanocomposites for removal of toxic As (V) from wastewater. Physica E Low Dimens Syst Nanostruct 127:114527. https://doi.org/10.1016/j.physe.2020.114527

  132. Yakout AA, Khan ZA (2021) High performance Zr-MnO2@ reduced graphene oxide nanocomposite for efficient and simultaneous remediation of arsenates As (V) from environmental water samples. J Mol Liq 334:116427. https://doi.org/10.1016/j.molliq.2021.116427

  133. Lingamdinne LP, Lee S, Choi J-S, Lebaka VR, Durbaka VRP, Koduru JR (2021) Potential of the magnetic hollow sphere nanocomposite (graphene oxide-gadolinium oxide) for arsenic removal from real field water and antimicrobial applications. J Hazard Mater 402:123882. https://doi.org/10.1016/j.jhazmat.2020.123882

  134. Choi J-S, Lingamdinne LP, Yang J-K, Chang Y-Y, Koduru JR (2020) Fabrication of chitosan/graphene oxide-gadolinium nanorods as a novel nanocomposite for arsenic removal from aqueous solutions. J Mol Liq 320:114410. https://doi.org/10.1016/j.molliq.2020.114410

  135. He J, Cui A, Ni F, Deng S, Shen F, Yang G (2018) A novel 3D yttrium based-graphene oxide-sodium alginate hydrogel for remarkable adsorption of fluoride from water. J Colloid Interface Sci 531:37–46. https://doi.org/10.1016/j.jcis.2018.07.017

    Article  Google Scholar 

  136. Paul B, Parashar V, Mishra A (2015) Graphene in the Fe 3 O 4 nano-composite switching the negative influence of humic acid coating into an enhancing effect in the removal of arsenic from water. Environ Sci Water Res Technol 1:77–83. https://doi.org/10.1039/C4EW00034J

    Article  Google Scholar 

  137. Yu F, Sun S, Ma J, Han S (2015) Enhanced removal performance of arsenate and arsenite by magnetic graphene oxide with high iron oxide loading. Phys Chem Chem Phys 17:4388–4397. https://doi.org/10.1039/C4CP04835K

    Article  Google Scholar 

  138. Ding J, Li B, Liu Y, Yan X, Zeng S, Zhang X, Hou L, Cai Q, Zhang J (2015) Fabrication of Fe 3 O 4@ reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water. J Mater Chem A 3:832–839. https://doi.org/10.1039/C4TA04297B

    Article  Google Scholar 

Download references

Acknowledgements

Vellore Institute of Technology is gratefully acknowledged for providing the opportunity to prepare this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Biswas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Anshuman, A. & Samal, B.N. A review on arsenic removal from wastewater using carbon nanotube and graphene-based nanomaterials as adsorbents. Nanotechnol. Environ. Eng. 8, 1033–1046 (2023). https://doi.org/10.1007/s41204-023-00332-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41204-023-00332-x

Keywords

Navigation