Skip to main content
Log in

Evaluation of Horizontal and Vertical Constrained Rod Casting Mold on Hot Tearing Susceptibility of Al-Cu Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

This research aims to evaluate horizontal and vertical constrained rod casting (CRC) molds on hot tearing susceptibility (HTS) of Al-xCu casting alloys with 2.2, 3.6, 7.5, and 12.5 percent Cu. The hot tears on the casting product were observed using a macroscopic approach. In addition, the hot tearing susceptibility of each casting product prepared using these molds was evaluated using the HTS formula. The results show that the vertical CRC mold has a higher HTS value than the horizontal CRC mold. The rod length is a significant factor in causing hot tearing. Longer rods are more susceptible to hot tearing. The horizontal CRC mold provides a clearer effect of rod length and Cu composition on the average HTS value. In the vertical CRC mold, the effect of Cu composition on the average HTS value is less clear. Therefore, it is highly recommended to use horizontal CRC mold for HTS testing of aluminum casting alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6.
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Y. Li, H. Li, L. Katgerman, Q. Du, J. Zhang, L. Zhuang, Recent advances in hot tearing during casting of aluminum alloys. Prog. Mater. Sci. 117, 100741 (2021). https://doi.org/10.1016/j.pmatsci.2020.100741

    Article  CAS  Google Scholar 

  2. S. Li, D. Apelian, Hot tearing of aluminum alloys. Int. J. Met. 5, 23–40 (2011). https://doi.org/10.1007/BF03355505

    Article  Google Scholar 

  3. Suyitno, W.H. Kool, L. Katgerman, Integrated approach for prediction of hot tearing. Metall. Mater. Trans. A 40, 2388–2400 (2009). https://doi.org/10.1007/s11661-009-9941-y

    Article  CAS  Google Scholar 

  4. D.G. Eskin, Suyitno, L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminum alloys. Prog. Mater. Sci. 49, 629–711 (2004). https://doi.org/10.1016/S0079-6425(03)00037-9

    Article  CAS  Google Scholar 

  5. G. Cao, S. Kou, Hot tearing of ternary Mg−Al−Ca alloy castings. Metall. Mater. Trans. A 37, 3647–3663 (2006). https://doi.org/10.1007/s11661-006-1059-x

    Article  Google Scholar 

  6. S. Kou, A criterion for cracking during solidification. Acta Mater. 88, 366–374 (2015). https://doi.org/10.1016/j.actamat.2015.01.034

    Article  CAS  Google Scholar 

  7. A. Hamadellah, A. Bouayad, C. Gerometta, Hot tear characterization of AlCu5MgTi and AlSi9 casting alloys using an instrumented constrained six rods casting method. J. Mater. Process. Technol. 244, 282–288 (2017). https://doi.org/10.1016/j.jmatprotec.2017.01.030

    Article  CAS  Google Scholar 

  8. M.O. Pekguleryuz, X. Li, C.A. Aliravci, In-Situ Investigation of hot tearing in aluminum alloy AA1050 via acoustic emission and cooling curve analysis. Metall. Mater. Trans. A 40, 1436–1456 (2009). https://doi.org/10.1007/s11661-009-9806-4

    Article  CAS  Google Scholar 

  9. G. Cao, I. Haygood, S. Kou, Onset of hot tearing in ternary Mg-Al-Sr alloy castings. Metall. Mater. Trans. A 41, 2139–2150 (2010). https://doi.org/10.1007/s11661-010-0248-9

    Article  CAS  Google Scholar 

  10. S.N. Dubey, Design and evaluation of an enhanced constrained rod casting mold for experimental characterization of hot tearing in aluminum casting alloys. Int. J. Cast Met. Res. 30, 201–216 (2017). https://doi.org/10.1080/13640461.2017.1286553

    Article  CAS  Google Scholar 

  11. Z. Wang, Y. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, N. Hort, Hot tearing susceptibility of binary Mg–Y alloy castings. Mater. Des. 47, 90–100 (2013). https://doi.org/10.1016/j.matdes.2012.12.044

    Article  CAS  Google Scholar 

  12. G. Cao, S. Kou, Hot cracking of binary Mg-Al alloy castings. Mater. Sci. Eng. A 417, 230–238 (2006). https://doi.org/10.1016/j.msea.2005.10.050

    Article  CAS  Google Scholar 

  13. S. Lin, C. Aliravci, M.O. Pekguleryuz, Hot-tear susceptibility of aluminum wrought alloys and the effect of grain refining. Metall. Mater. Trans. A 38, 1056–1068 (2007). https://doi.org/10.1007/s11661-007-9132-7

    Article  CAS  Google Scholar 

  14. H. Kamguo Kamga, D. Larouche, M. Bournane, A. Rahem, Solidification of aluminum-copper B206 alloys with iron and silicon additions. Metall. Mater. Trans. A 41, 2844–2855 (2010). https://doi.org/10.1007/s11661-010-0293-4

    Article  CAS  Google Scholar 

  15. B. Hu, Z. Li, D. Li, T. Ying, X. Zeng, W. Ding, A hot tearing criterion based on solidification microstructure in cast alloys. J. Mater. Sci. Technol. 105, 68–80 (2022). https://doi.org/10.1016/j.jmst.2021.06.071

    Article  CAS  Google Scholar 

  16. H. Huang, P.H. Fu, Y.X. Wang, L.M. Peng, H.Y. Jiang, Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg-3Nd-0.2Zn-Zr Mg alloys. Trans. Nonferrous Met. Soc. China 24, 922–929 (2014). https://doi.org/10.1016/S1003-6326(14)63144-7

    Article  CAS  Google Scholar 

  17. V. Malau, H. Akhyar, P.T. Iswanto, Modification of constrained rod casting mold for new hot tearing measurement. Arch. Metall. Mater. 63, 1201–1208 (2018). https://doi.org/10.24425/123792

    Article  CAS  Google Scholar 

  18. H. Akhyar, V. Malau, Suyitno, P.T. Iswanto, Hot tearing susceptibility of aluminum alloys using CRCM-horizontal mold. Results Phys. 7, 1030–1039 (2017). https://doi.org/10.1016/j.rinp.2017.02.041

    Article  Google Scholar 

  19. M. Uludağ, R. Çetin, D. Dispinar, M. Tiryakioğlu, The effects of degassing, grain refinement & Sr-addition on melt quality-hot tear sensitivity relationships in cast A380 aluminum alloy. Eng. Fail. Anal. 90, 90–102 (2018). https://doi.org/10.1016/j.engfailanal.2018.03.025

    Article  CAS  Google Scholar 

  20. D. Cheng, L. Zhang, G. Wu, J. Mao, W. Liu, Effects of Cu content on the microstructure, mechanical property, and hot tearing susceptibility of die casting hypereutectic Al–22Si–0.4Mg alloy. J. Mater. Res. 31, 3629–3637 (2016). https://doi.org/10.1557/jmr.2016.388

    Article  CAS  Google Scholar 

  21. G. Zou, H. Zhang, Y. Yang, F. Lu, Z. Yu, C. Wang, Effects of pouring and mold temperatures on the fluidity and hot tearing susceptibility of Al–3.5Si–0.5Mg–0.4Cu Alloy. Trans. Indian Inst. Met. 73, 2511–2517 (2020). https://doi.org/10.1007/s12666-020-02058-9

    Article  CAS  Google Scholar 

  22. A.M. Nabawy, A.M. Samuel, H.W. Doty, F.H. Samuel, A review on the criteria of hot tearing susceptibility of aluminum cast alloys. Int. J. Met. 15, 1362–1374 (2021). https://doi.org/10.1007/s40962-020-00559-3

    Article  Google Scholar 

  23. I.I. Novikov, O.E. Grushko, Hot cracking susceptibility of Al–Cu–Li and Al–Cu–Li–Mn alloys. Mater. Sci. Technol. 11, 926–932 (1995). https://doi.org/10.1179/mst.1995.11.9.926

    Article  CAS  Google Scholar 

  24. J. Campbell, Complete casting handbook: metal casting processes, metallurgy, techniques and design, 1st edn. (Elsevier, Amsterdam, 2011), pp.137–139

    Google Scholar 

  25. Y. Guo, L. Zhang, G. Wu, Y. Wang, F. Qi, X. Xu, X. Tong, Influence of Cu addition on hot tearing susceptibility and fluidity of Al-Li-Cu alloys: Experimental investigation, criterion prediction and simulation assessment. J. Alloys Compd. 969, 172301 (2023). https://doi.org/10.1016/j.jallcom.2023.172301

    Article  CAS  Google Scholar 

  26. S. Li, K. Sadayappan, D. Apelian, Characterisation of hot tearing in Al cast alloys: Methodology and procedures. Int. J. Cast Met. Res. 24, 88–95 (2011). https://doi.org/10.1179/1743133610Y.0000000004

    Article  CAS  Google Scholar 

  27. J. Campbell, Complete casting handbook: metal casting processes, metallurgy, techniques and design, 2nd edn. (Butterworth-Heinemann, Oxford, 2015), pp.417–445

    Book  Google Scholar 

  28. M.H. Ghoncheh, S.G. Shabestari, A. Asgari, M. Karimzadeh, Nonmechanical criteria proposed for prediction of hot tearing sensitivity in 2024 aluminum alloy. Trans. Nonferrous Met. Soc. China 28, 848–857 (2018). https://doi.org/10.1016/S1003-6326(18)64718-1

    Article  CAS  Google Scholar 

  29. Suyitno, V.I. Savran, D.G. Eskin. L. Katgerman, Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35A, 3551–3561 (2004). https://doi.org/10.1007/s11661-004-0192-7

    Article  CAS  Google Scholar 

  30. Suyitno, D.G. Eskin, L. Katgerman, Structure observations related to hot tearing of Al–Cu billets produced by direct-chill casting. Mater. Sci. Eng. A 420, 1–7 (2006). https://doi.org/10.1016/j.msea.2005.12.037

    Article  CAS  Google Scholar 

  31. E. Pujiyulianto, Suyitno, K. Rajagukguk, B. Arifvianto, L. Katgerman, F. Paundra, H.T. Yudistira, F.P. Nurullah, A. Muhyi, M.F. Arif, Effect of chemical composition on hot cracking susceptibility (HCS) using various hot cracking criteria. Eng. Fail. Anal. 152, 107501 (2023). https://doi.org/10.1016/j.engfailanal.2023.107501

    Article  CAS  Google Scholar 

  32. S.R. Sama, T. Badamo, P. Lynch, G. Manogharan, Novel sprue designs in metal casting via 3D sand-printing. Addit. Manuf. 25, 563–578 (2019). https://doi.org/10.1016/j.addma.2018.12.009

    Article  CAS  Google Scholar 

  33. S.H. Majidi, C. Beckermann, Modelling of air entrainment during pouring of metal castings. Int. J. Cast Met. Res. 30, 301–315 (2017). https://doi.org/10.1080/13640461.2017.1307624

    Article  CAS  Google Scholar 

  34. G. Razaz, T. Carlberg, Hot tearing susceptibility of AA3000 aluminum alloy containing Cu, Ti, and Zr. Metall. Mater. Trans. A 50, 3842–3854 (2019). https://doi.org/10.1007/s11661-019-05290-1

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by PT. Ontiyus Karya Mulia, Indonesia. The authors are grateful to Bambang Tiroso for the support in sending the vertical CRC mold.

Funding

This work was financially by The Ministry of Education and Culture, Republic of Indonesia with a research grant No. 1661/UN1/DITLIT/Dit-Lit/PT.01.03/2022, Universitas Gadjah Mada and Institut Teknologi Sumatera, Indonesia

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suyitno Suyitno.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajagukguk, K., Suyitno, S., Saptoadi, H. et al. Evaluation of Horizontal and Vertical Constrained Rod Casting Mold on Hot Tearing Susceptibility of Al-Cu Alloys. Inter Metalcast (2024). https://doi.org/10.1007/s40962-023-01250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01250-z

Keywords

Navigation