Skip to main content
Log in

Effects of Ni Content on Solidification Behavior and Hot Tearing Susceptibility of LPSO-Reinforced Mg–4Y–xNi alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this work, the solidification behavior and hot tearing susceptibility (HTS) of Mg–4Y–xNi (x = 0.5, 1, 2, 3, 4 wt%) alloys were investigated through the thermal analysis (TA) method and a constrained rod casting system. The solidification characteristics parameters measured by TA method were coupled with the prevailing hot tearing criteria for predicting HTS of the alloys, and then compared with the experimental results. Subsequently, the hot tearing mechanism was studied upon shrinkage stress development, solidification characteristics and microstructure evolutions. The results showed that Kou’s criterion accurately and effectively predicted HTS of the alloys, that is, HTS of the alloys exhibited a Λ-shaped trend with increasing Ni content, peaking at a Ni content of 1 wt%. HTS of the alloys depended primarily on the dendrite coherency, residual liquid and LPSO-bridging. The delay in dendrite coherency prolonged the free feeding interval, which in conjunction with the increased residual liquid fraction improved the feeding capacity of the alloys at the end of solidification and decreased HTS. The higher degree of bridging between adjacent grains of alloys with higher solid fraction at dendrite coherency implies a higher skeleton strength of the alloys. In particular, when the LPSO phase precipitates at grain boundaries to form grain boundary bridges, it effectively hinders the initiation and propagation of hot tearing. This is due to its certain orientation relationship with the α-Mg matrix, which will significantly increase the grain boundary strength by strongly pinning the grains on both sides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. J.B. Lyu, J.Y. Kim, H.X. Liao, J. She, J.F. Song, J. Peng, F.S. Pan, B. Jiang, Effect of substitution of Zn with Ni on microstructure evolution and mechanical properties of LPSO dominant Mg–Y–Zn alloys. Mater. Sci. Eng. A 773, 138735 (2020). https://doi.org/10.1016/j.msea.2019.138735

    Article  CAS  Google Scholar 

  2. Y. Kawamura, M. Yamasaki, Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. Mater. Trans. 47, 2986–2992 (2007). https://doi.org/10.2320/matertrans.MER2007142

    Article  CAS  Google Scholar 

  3. H. Liu, H. Huang, J.P. Sun, C. Wang, J. Bai, A.B. Ma, X.H. Chen, Microstructure and mechanical properties of Mg-RE-TM cast alloys containing long period stacking ordered phases: a review. Acta Metall. Sin.-Engl. Lett. 32, 269–285 (2019). https://doi.org/10.1007/s40195-018-0862-x

    Article  CAS  Google Scholar 

  4. S.R. Zhang, J.Y. Kim, F.X. Wang, K.K. Kang, H. Xue, X.H. Chen, F.S. Pan, Microstructure and mechanical properties of LPSO dominant Mg–2Y–Cu–TM (TM=Cu, Zn Co, Ni) alloys. Mater Charact 191, 112111 (2022). https://doi.org/10.1016/j.matchar.2022.112111

    Article  CAS  Google Scholar 

  5. F.S. Pan, M.B. Yang, X.H. Chen, A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. J. Mater. Sci. Technol. 32, 1211–1221 (2016). https://doi.org/10.1016/j.jmst.2016.07.001

    Article  CAS  Google Scholar 

  6. P. Gunde, A. Schiffl, P.J. Uggowitzer, Influence of yttrium additions on the hot tearing susceptibility of magnesium-zince alloys. Mater. Sci. Eng. A 527, 7074–7079 (2010). https://doi.org/10.1016/j.msea.2010.07.086

    Article  CAS  Google Scholar 

  7. H. Qin, G.Y. Yang, X.W. Zheng, S.F. Luo, T. Bai, W.Q. Jie, Effect of Gd content on hot-tearing susceptibility of Mg–6Zn–xGd casting alloys. China Foundry 19, 131–139 (2022). https://doi.org/10.1007/s41230-022-1117-z

    Article  Google Scholar 

  8. Y. Li, H. Li, L. Katgerman, Q. Du, J. Zhang, L. Zhuang, Recent advances in hot tearing during casting of aluminium alloys. Prog. Mater. Sci. 117, 100741 (2021). https://doi.org/10.1016/j.pmatsci.2020.100741

    Article  CAS  Google Scholar 

  9. J.W. Liu, S. Kou, Susceptibility of ternary aluminum alloys to cracking during solidification. Acta Mater. 125, 513–523 (2017). https://doi.org/10.1016/j.actamat.2016.12.028

    Article  CAS  Google Scholar 

  10. I. Farup, A. Mo, Two-phase modeling of mushy zone parameters associated with hot tearing. Metall. Metal. Trans. A 31, 1461–1472 (2000). https://doi.org/10.1007/s11661-000-0264-2

    Article  Google Scholar 

  11. G. Cao, C. Zhang, H. Cao, Y.A. Chang, S. Kou, Hot-tearing susceptibility of ternary Mg–Al–Sr alloy castings. Metall. Metal. Trans. A 41, 706–716 (2010). https://doi.org/10.1007/s11661-009-0134-5

    Article  CAS  Google Scholar 

  12. Z. Liu, S.B. Zhang, P.L. Mao, F. Wang, Effects of Y on hot tearing formation mechanism of Mg–Zn–Y–Zr alloys. Mater. Sci. Technol. 30, 1214–1222 (2014). https://doi.org/10.1179/1743284713Y.0000000437

    Article  CAS  Google Scholar 

  13. S.M. Li, K. Sadayappan, D. Apelian, Role of grain refinement in the hot tearing of cast Al–Cu alloy. Metall. Metal. Trans. A 44, 614–623 (2013). https://doi.org/10.1007/s11663-013-9801-4

    Article  CAS  Google Scholar 

  14. G.N. Zhu, Z. Wang, W.Y. Qin, Y. Zhou, L. Zhou, F. Wang, Z. Liu, P.L. Mao, Effect of Yttrium on hot tearing susceptibility of Mg–6Zn–1Cu–0.6Zr alloys. Int. Metalcast. 14, 179–190 (2020). https://doi.org/10.1007/s40962-019-00352-x

    Article  Google Scholar 

  15. Z.Q. Wei, W.P. Mu, S.M. Liu, F. Wang, L. Zhou, Z. Wang, P.L. Mao, Z. Liu, Effects of Gd on hot tearing susceptibility of as-cast Mg96.94–Zn1–Y(2–x)–Gdx–Zr0.06 alloys reinforced with LPSO phase. J. Alloys Compd. 926, 166895 (2022). https://doi.org/10.1016/j.jallcom.2022.166895

    Article  CAS  Google Scholar 

  16. G.J. Zhang, Y. Wang, Z. Liu, S.M. Liu, Influence of Al addition on solidification path and hot tearing susceptibility of Mg-2Zn-(3+0.5x)Y-xAl alloys. J. Magnes. Alloy. 7, 272–282 (2019). https://doi.org/10.1016/j.jma.2019.04.001

    Article  CAS  Google Scholar 

  17. S.M. Liu, Z.Q. Wei, Z. Liu, P.L. Mao, F. Wang, Z. Wang, L. Zhou, X.N. Yin, Effect of Zn content on hot tearing susceptibility of LPSO enhanced Mg-Znx-Y2-Zr0.06 alloys with different initial mold temperatures. J. Alloys Compd. 904, 163963 (2022). https://doi.org/10.1016/j.jallcom.2022.163963

    Article  CAS  Google Scholar 

  18. X. Yang, S.S. Wu, S.L. Lu, L.Y. Hao, X.G. Fang, Effects of Ni levels on microstructure and mechanical properties of Mg–Ni–Y alloy reinforced with LPSO structure. J. Alloys Compd. 726, 276–283 (2017). https://doi.org/10.1016/j.jallcom.2017.08.003

    Article  CAS  Google Scholar 

  19. Z.Q. Wei, S.M. Liu, Z. Liu, L. Zhou, Y. Li, P.L. Mao, F. Wang, Z. Wang, Effects of Zn content on hot tearing susceptibility of Mg–Zn–Gd–Y–Zr alloys. Int. Metalcast. 16, 1902–1914 (2022). https://doi.org/10.1007/s40962-021-00720-6

    Article  CAS  Google Scholar 

  20. F. Shi, C.Q. Wang, Z.M. Zhang, Microstructures, corrosion and mechanical properties of as-cast Mg–Zn–Y–(Gd) alloys. Trans. Nonferrous Met. Soc. China 25, 2172–2180 (2015). https://doi.org/10.1016/S1003-6326(15)63829-8

    Article  CAS  Google Scholar 

  21. H. Liu, F. Xue, J. Bai, J. Zhou, X.D. Liu, Effect of substitution of 1 at% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2 alloy. Mater. Sci. Eng. A 585, 387–395 (2013). https://doi.org/10.1016/j.msea.2013.07.036

    Article  CAS  Google Scholar 

  22. S.M. Zhu, R. Lapovok, J.F. Nie, Y. Estrin, S.N. Mathaudhu, Microstructure and mechanical properties of LPSO phase dominant Mg85.8Y7.1Zn7.1 and Mg85.8Y7.1Ni7.1 alloys. Mater. Sci. Eng. A 692, 35–42 (2017). https://doi.org/10.1016/j.msea.2017.03.057

    Article  CAS  Google Scholar 

  23. H.N. Yu, S.M. Liu, L. Zhou, Z. Liu, Z.Q. Wei, H. Guo, Study on solidification behavior and hot tearing susceptibility of Mg-2xY-xNi alloys. Int. J. Metalcast. 15, 995–1005 (2021). https://doi.org/10.1007/s40962-020-00531-1

    Article  CAS  Google Scholar 

  24. Z.S. Zhen, N. Hort, Y.D. Huang, N. Petri, O. Utke, K.U. Kainer, Quantitative determination on hot tearing in Mg–Al binary alloys. Mater. Sci. Forum 618–619, 533–540 (2009). https://doi.org/10.4028/www.scientific.net/MSF.618-619.533

    Article  Google Scholar 

  25. S. Farahany, H.R. Bakhsheshi-Rad, M.H. Idris, M.R.A. Kadir, A.F. Lotfabadi, A. Ourdjini, In-situ thermal analysis and macroscopical characterization of Mg-xCa and Mg-0.5Ca-xZn alloy systems. Thermochim. Acta 527, 180–189 (2012). https://doi.org/10.1016/j.tca.2011.10.027

    Article  CAS  Google Scholar 

  26. S. Mostafapoor, M. Malekan, M. Emamy, Effects of Zr addition on solidification characteristics of Al–Zn–Mg–Cu alloy using thermal analysis. J. Therm. Anal. Calorim. 134, 1457–1469 (2018). https://doi.org/10.1007/s10973-018-7426-1

    Article  CAS  Google Scholar 

  27. D.G. Eskin, L. Katgerman, A quest for a new hot tearing criterion. Metall. Mater. Trans. A 38, 1511–1519 (2007). https://doi.org/10.1007/s11661-007-9169-7

    Article  CAS  Google Scholar 

  28. T.W. Clyne, G.J. Davies, The influence of composition on solidification cracking susceptibility in binary alloys. Br. Foundrym. 741, 65–73 (1981)

    Google Scholar 

  29. S. Kou, A criterion for cracking during solidification. Acta Mater. 88, 366–374 (2015). https://doi.org/10.1016/j.actamat.2015.01.034

    Article  CAS  Google Scholar 

  30. B. Hu, D.J. Li, Z.X. Li, J.K. Xu, X.Y. Wang, X.Q. Zeng, Hot tearing behavior in double ternary eutectic alloy system: Al–Mg–Si alloys. Metall. Metal. Trans. A 52, 789–805 (2021). https://doi.org/10.1007/s11661-020-06101-8

    Article  CAS  Google Scholar 

  31. K. Liu, S. Kou, Susceptibility of magnesium alloys to solidification cracking. Sci. Technol. Weld. Join. 25, 251–257 (2019). https://doi.org/10.1080/13621718.2019.1681160

    Article  CAS  Google Scholar 

  32. X.D. Du, F. Wang, Z. Wang, L. Zhou, Z.Q. Wei, Z. Liu, P.L. Mao, Effect of Ca/Al ratio on hot tearing susceptibility of Mg–Al–Ca alloy. J. Alloys Compd. 911, 165113 (2022). https://doi.org/10.1016/j.jallcom.2022.165113

    Article  CAS  Google Scholar 

  33. C.Y. Yue, X.G. Yuan, Y.X. Wang, M. Su, Effect of adding Pr on the microstructure and hot tearing sensitivity of as-cast Al–Cu–Mg alloys. Mater Charact 191, 112141 (2022). https://doi.org/10.1016/j.matchar.2022.112141

    Article  CAS  Google Scholar 

  34. B.C. Li, J. Zhang, F.W. Ye, R.Y. Tang, Q. Dong, J.H. Chen, An approach to studying the hot tearing mechanism of alloying elements in ternary Mg–Zn–Al alloys. J. Mater. Process. Tech. 317, 117980 (2023). https://doi.org/10.1016/j.jmatprotec.2023.117980

    Article  CAS  Google Scholar 

  35. C. Muthuraja, I. Balasundar, K.R. Ravi, Determination of liquid fraction in Mg–Zn–Y alloys: thermal analysis versus thermodynamic approach. Trans. Indian Inst. Met. 71, 2807–2811 (2018). https://doi.org/10.1007/s12666-018-1419-4

    Article  CAS  Google Scholar 

  36. X.H. Shao, Z.Q. Yang, X.L. Ma, Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater. 58, 4760–4771 (2010). https://doi.org/10.1016/j.actamat.2010.05.012

    Article  CAS  Google Scholar 

  37. W.J. Ci, L.L. Deng, X.H. Chen, X. Dai, L. Feng, C. Wen, J.Y. Bai, F.S. Pan, Effect of minor Gd addition on microstructure, mechanical performance, and corrosion behavior of Mg–Y–Gd alloys. J. Mater. Res. Technol. JMRT 26, 4107–4120 (2023). https://doi.org/10.1016/j.jmrt.2023.08.166

    Article  CAS  Google Scholar 

  38. Z.L. Wang, Q. Luo, S.L. Chen, K.C. Chou, Q. Li, Experimental investigation and thermodynamic calculation of the Mg–Ni–Y system (Y<50 at.%) at 400 and 500 °C. J. Alloys Compd. 649, 1306–1314 (2015)

    Article  CAS  Google Scholar 

  39. X. Yang, S.S. Wu, S.L. Lu, L.Y. Hao, X.G. Fang, Refinement of LPSO structure in Mg–Ni–Y alloys by ultrasonic treatment. Ultrason. Sonochem. 40, 472–479 (2018). https://doi.org/10.1016/j.ultsonch.2017.07.042

    Article  CAS  Google Scholar 

  40. X.H. Shao, Z.Q. Yang, J.H. You, K.Q. Qiu, X.L. Ma, Microstructure and microhardness evolution of a Mg83Ni6Zn5Y6 alloy upon annealing. J. Alloys Compd. 509, 7221–7228 (2011). https://doi.org/10.1016/j.jallcom.2011.04.067

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Liaoning Nature Fund Guidance Plan (No. 2022-BS-179), Project of Liaoning Education Department (Nos. LJKMZ20220467 and LJKMZ20220462) and the Key Laboratory of Magnesium alloys and Fabrication Technology of Liaoning Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqi Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, W., Wei, Z., Mao, P. et al. Effects of Ni Content on Solidification Behavior and Hot Tearing Susceptibility of LPSO-Reinforced Mg–4Y–xNi alloys. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01200-9

Keywords

Navigation