Skip to main content
Log in

Study on Solidification Behavior and Hot Tearing Susceptibility of Mg–2xY–xNi ALLOYS

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Mg–2xY–xTM(Zn,Cu,Ni) alloys reinforced with LPSO have outstanding mechanical properties, but there is less research on Mg–2xY–xNi hot tearing sensitivity. Therefore, based on Clyne Davies Model and Newton Baseline Method, the hot tearing tendency of Mg–2xY–xNi alloys with x = 0.5, 1, 1.5, 2.0, 2.5 wt% was quantified, and the tendency was further verified by the tearing evaluation of “T” shaped castings. The results show that the hot tearing susceptibility (HTS) decreases with the increase in x. Especially when x ≥ 1.5 wt%, and the HTS of Mg–Y–Ni alloys is even lower than that of Mg–Y–Zn alloys. The analysis of solidification microstructure evolution reveals that with the increase in x, the grain refinement and equiaxed tendency of α-Mg increases, and the solid fraction increases when dendrites are coherent, and the feeding stage of residual liquid phase between dendrites is shortened, which is an important reason for the decrease in hot tearing tendency. The analysis of phase transformation shows that with the increase in x, the residual liquid phase between α grains increases, which has better feeding effect on solidification, while the precipitation amount of LPSO phase which has coherent relationship with α increases, and its bridging effect on inhibiting grain boundary cracking is enhanced, which is another reason for reducing the HTS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. G. Cao, C. Zhang, H. Cao et al., Hot-tearing susceptibility of ternary Mg–Al–Sr alloy casting. Metall. Mater. Trans. A 41A, 706–716 (2010)

    Article  CAS  Google Scholar 

  2. P. Gunde, A. Schiffl, P.J. Uggowitzer, Influence of yttrium additions on the hot tearing susceptibility of magnesium–zinc alloys. Mater. Sci. Eng., A 527, 7074–7079 (2010)

    Article  Google Scholar 

  3. L. Zhou, Y.D. Huang, P.L. Mao et al., Influence of composition on hot tearing in binary Mg–Zn alloys. Int. J. Cast Met. Res. 24, 170–176 (2011)

    Article  Google Scholar 

  4. Y.S. Wang, Q.D. Wang, G.H. Wu et al., Hot-tearing susceptibility of Mg–9Al–xZn alloy. Mater. Lett. 57, 929–934 (2002)

    Article  CAS  Google Scholar 

  5. J.F. Song, Z. Wang, Y.D. Huang et al., Hot tearing characteristics of Mg–2Ca–xZn alloys. J. Mater. Sci. 51, 2687–2704 (2016)

    Article  CAS  Google Scholar 

  6. Z.P. Luo, S.Q. Zhang, High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg–Zn–Zr–Y magnesium alloy. J. Mater. Sci. Lett. 19(9), 813–815 (2016)

    Article  Google Scholar 

  7. Y. Kawamura, M. Yamasaki, Formation and mechanical properties of Mg97Zn1RE2 Alloys with Long-Period Stacking Ordered structure. Mater. Trans. 48(11), 2986–2992 (2007)

    Article  CAS  Google Scholar 

  8. D.W. Ji, C.M. Liu, Z.Y. Chen et al., Effects of Zn content on microstructures and mechanical properties of as cast Mg–Zn–Y–Zr alloys. Mater. Sci. Technol. 29, 480–486 (2013)

    Article  CAS  Google Scholar 

  9. J.F. Wang, P.F. Song, S. Gao et al., Influence of Y on the phase composition and mechanical properties of asextruded Mg–Zn–Y–Zr magnesium alloys. J. Mater. Sci. 47, 2005–2010 (2012)

    Article  CAS  Google Scholar 

  10. Z. Liu, S.B. Zhang, P.L. Mao et al., Effects of Y on hot tearing formation mechanism of Mg–Zn–Y–Zr alloys. Mater. Sci. Technol. 30, 1214–1222 (2014)

    Article  CAS  Google Scholar 

  11. B.J. Lv, J. Peng, Y. Peng et al., The effect of LPSO phase on hot deformation behavior and dynamic recrystallization evolution of Mg–2.0Zn–0.3Zr–5.8Y alloy. Mater. Sci. Eng. A. 579, 209–216 (2013)

    Article  CAS  Google Scholar 

  12. Z. Wei, Y. Wang, Z. Liu, Effects of Zn and Y on hot-tearing susceptibility of Mg–xZn–2xY alloys. Mater. Sci. Technol. 34(16), 2001–2006 (2018)

    Article  CAS  Google Scholar 

  13. T. Itoi, K. Takahashi, H. Moriyama, M. Hirohashi, A high-strength Mg–Ni–Y alloy sheet with a long-period ordered phase prepared by hot-rolling. Scripta Mater. 59(10), 1155–1158 (2008)

    Article  CAS  Google Scholar 

  14. H. Liu, F. Xue, J. Bai, J. Zhou, X. Liu, Effect of substitution of 1 wt% Ni for Zn on the microstructure and mechanical properties of Mg94Y4Zn2, Alloy. Mater. Sci. Eng. A 585, 387–395 (2013)

    Article  CAS  Google Scholar 

  15. S.M. Zhu, R. Lapovok, J.F. Nie, Y. Estrin, S.N. Mathaudhu, Microstructure and mechanical properties of LPSO phase dominant Mg85.8Y7.1Zn7.1 and Mg85.8Y7.1Ni7.1 alloys. Mater. Sci. Eng. A 692, 35–42 (2017)

    Article  CAS  Google Scholar 

  16. G. Zhu, Z. Wang, W. Qiu et al., Effect of yttrium on hot tearing susceptibility of Mg–6Zn–1Cu–0.6Zr Alloys. Int. Metalcast 14, 179–190 (2020)

    Article  Google Scholar 

  17. Z.H. Huang, S.M. Liang, R.S. Chen et al., Solidification pathways and constituent phases of Mg–Zn–Y–Zr alloys. J. Alloys Compd. 468, 170–178 (2013)

    Article  Google Scholar 

  18. Z. Zhen, N. Hort, Y.D. Huang, N. Petri, O. Utke, K.U. Kainer, Quantitative determination on hot tearing in Mg–Al binary alloys. Mater. Sci. Forum 618, 533–540 (2013)

    Google Scholar 

  19. Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, K.N. Hort, Experimental and numerical analysis of hot tearing susceptibility for Mg–Y alloys. J. Mater. Sci. 49, 353–362 (2013)

    Article  Google Scholar 

  20. J.F. Song, Z. Wang, Y.D. Huang et al., Hot tearing susceptibility of Mg–Ca binary alloys. Metall. Mater. Trans. A 46(12), 6003–6017 (2015)

    Article  CAS  Google Scholar 

  21. G. Cao, I. Haygood, S. Kou, Onset of hot tearing in ternary Mg–Al–Sr alloy casting. Metal Mater Trans A. 41, 2139–2150 (2015)

    Article  Google Scholar 

  22. Z. Wang, Y.D. Huang, A. Srinivasan, Z. Liu, F. Beckmann, K.U. Kainer, N. Hort, Hot tearing susceptibility of binary Mg–Y alloy castings. Mater. Design 47, 90–100 (2013)

    Article  CAS  Google Scholar 

  23. L. Zhou, Z. Liu, Y.D. Huang et al., Prediction of hot tearing susceptibility for Mg–Zn–(Al) alloys. Adv. Mater. Res. 509, 138–146 (2012)

    Article  CAS  Google Scholar 

  24. Z. Wang, Y.D. Huang, A. Srinivasan et al., Experimental and numerical analysis of hot tearing susceptibility for Mg–Y alloys. J. Mater. Sci. 49, 353–362 (2014)

    Article  CAS  Google Scholar 

  25. Y. Zhang, X. Zeng, L. Liu, C. Lu, H. Zhou, Q. Li, Y. Zhu, Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg–Zn–Y–Zr alloys. Mater. Sci. Eng. A 373(1), 320–327 (2004)

    Article  Google Scholar 

  26. Z. Zhen, N. Hort, Y.D. Huang, N. Petri, O. Utke, K.U. Kainer, Quantitative determination on hot tearing in Mg–Al binary alloys. Mater. Sci. Forum 618–619, 533–540 (2009)

    Article  Google Scholar 

  27. X. Yang, S. Wu, S. Lü, L. Hao, X. Fang, Effects of Ni levels on microstructure and mechanical properties of Mg–Ni–Y alloy reinforced with LPSO structure. J. Alloys Compd. 726, 276–283 (2017)

    Article  CAS  Google Scholar 

  28. M. Malekan, S.G. Shabestari, Computer-aided cooling curve thermal analysis used to predict the quality of aluminium alloys. J. Therm. Anal. Calorim. 103, 453–458 (2011)

    Article  CAS  Google Scholar 

  29. H. Cruz, C. Gonzalez, A. Juárez et al., Quantification of the microconstituents formed during solidification by newton thermal analysis method. J. Mater. Process. Technol. 178, 128–134 (2006)

    Article  CAS  Google Scholar 

  30. M.B. Djurdjevic, J.H. Sokolowski, Z. Odanovic, Determination of dendrite coherency point characteristics using first derivative curve versus temperature. Therm. Anal. Calorim. 109, 875–882 (2012)

    Article  CAS  Google Scholar 

  31. Z.Q. Wei, S.M. Liu, Z. Liu et al., Effects of Zn content on hot tearing susceptibility of Mg–7Gd–5Y–05Zr alloy. Metals 10(3), 414 (2020)

    Article  CAS  Google Scholar 

  32. G. Cao, S. Kou, Hot tearing of ternary Mg–Al–Ca alloy castings. Metall. Mater. Trans. A 37, 3647–3663 (2006)

    Article  Google Scholar 

  33. Z. Liu, S.B. Zhang, P.L. Mao et al., Effects of Y on hot tearing susceptibility of Mg–Zn–Y–Zr alloys. Trans. Nonferrous Metal. Soc. China. 24, 907–914 (2014)

    Article  CAS  Google Scholar 

  34. Z. Wang, S. Yao, G. Cao, P. Mao, F. Wang, L. Zhou, Z. Liu, Effect of yttrium addition on dynamic mechanical properties, microstructure, and fracture behavior of extrusion-shear ZC61 + xY (x = 0, 1, 2, 3) alloys. Mater. Charact. 169, 110615 (2020)

    Article  CAS  Google Scholar 

  35. M.Z. Li, Y.Q. Wang, C. Li et al., Effects of neodymium rich rare earth elements on microstructure and mechanical properties of as cast AZ31 magnesium alloy. Mater. Sci. Technol. 27, 1138–1142 (2014)

    Article  Google Scholar 

  36. D.K. Xu, W.N. Tang, L. Liu et al., Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg–Zn–Y–Zr alloys. J. Alloys Compd. 432, 129–134 (2007)

    Article  CAS  Google Scholar 

  37. X. Du, F. Wang, Z. Wang, X. Li, Z. Liu, P. Mao, Hot tearing susceptibility of AXJ530 alloy under low-frequency alternating magnetic field. Acta Metall. Sin. (Engl. Lett.) 33(9), 1259–1270 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from High level innovation team of Liaoning Province (XLYC1908006), Innovation Talent Program in Science and Technology for Young and Middle-aged Scientists of Shenyang (No. RC.180111), Project of Liaoning Education Department (Nos. LQGD2019002 and LJGD2019004), Liaoning nature fund guidance plan (No. 2019-ZD-0210) and Liaoning Revitalization Talents Program (Nos. XLYC1807021 and 1907007), Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (2019JH3/30100014), National Key R&D Project (SQ2020YFC200162-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimeng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Liu, S., Zhou, L. et al. Study on Solidification Behavior and Hot Tearing Susceptibility of Mg–2xY–xNi ALLOYS. Inter Metalcast 15, 995–1005 (2021). https://doi.org/10.1007/s40962-020-00531-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00531-1

Keywords

Navigation