Skip to main content
Log in

Impact Test Analysis of Aluminum Alloy Wheels Under Different Temperature

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Aluminum alloy wheels are used worldwide in both the warmest and coldest temperatures. This study was conducted to investigate the impact resistance of aluminum alloy wheels produced by the low-pressure die casting process in real-life conditions. The V-notched Charpy impact test specimens were extracted from T6 heat-treated A356 aluminum alloy wheels. These specimens were tested with an instrumented Charpy V-notched impact tester after being conditioned at temperatures of − 75, − 40, 0, 20, 60, 95, and 175 °C. Charpy impact test diagrams of load-time and energy-time were created. The average crack initiation Charpy impact strength, average crack propagation Charpy impact strength, and average total Charpy impact strength values at different temperatures were calculated. Analysis of the fracture surfaces was performed using a scanning electron microscope (SEM), and the microstructure was analyzed using optical microscopy. In addition, the chemical characterization of the samples was performed by energy-dispersive spectroscopy (EDS) and optical emission spectroscopy (OES). The results of all the instrumented Charpy impact tests, together with the macroscopic and microscopic fracture surface examinations, revealed important results on the nature of fracture and the effects of different temperatures. The study revealed the variations of the Charpy crack initiation, crack propagation and total impact strengths as a function over a wide range of temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

REFERENCES

  1. D. Sui, Z. Cui, R. Wang, S. Hao, Q. Han, Effect of cooling process on porosity in the aluminum alloy automotive wheel during low-pressure die casting. Int. Metalcast 10, 32–42 (2016). https://doi.org/10.1007/s40962-015-0008-0

    Article  Google Scholar 

  2. O. Özaydın, A.Y. Kaya, D. Dispinar, Effect of Li additions and holding time on the mechanical properties of the AlSi9Mg alloys. Metall. Italiana 0026–0843(113), 19–24 (2021)

    Google Scholar 

  3. I.A. Essienubong, O. Ikechukwu, P.O. Ebunilo, Comparison of aluminium wheel to steel wheel in relation to weight and fuel consumption (energy) in automobiles. Indust. Syst. Eng. 1(1), 1–9 (2016). https://doi.org/10.22399/ijcesen.913166

    Article  Google Scholar 

  4. E. Erzi, M. Tiryakioğlu, A simple procedure to determine incoming quality of aluminum alloy ingots and its application to A356 Alloy Ingots. Int. Metalcast 14, 999–1004 (2020). https://doi.org/10.1007/s40962-020-00414-5

    Article  Google Scholar 

  5. M.A. Elahi, S.G. Shabestari, Effect of various melt and heat treatment conditions on impact toughness of A356 aluminum alloy. Transact. Nonferrous Metals Soc. China 26(4), 956–965 (2016). https://doi.org/10.1016/s1003-6326(16)64191-2

    Article  Google Scholar 

  6. G.K. Sigworth, The modification of Al-Si casting alloys: important practical and theoretical aspects. Int. Metalcast 2, 19–40 (2008). https://doi.org/10.1007/BF03355425

    Article  CAS  Google Scholar 

  7. S. Shivkumar, C. Keller, M. Trazzera, D. Apelian, Precipitation hardening in A356 alloys, in Production, refining fabrication and recycling of light metals. (Elsevier, Netharland, 1990), pp. 264–278

    Chapter  Google Scholar 

  8. F. Paray, B. Kulunk, J.E. Gruzleski, Impact properties of Al-Si foundry alloys. Int. J. Cast Metals Res. 13(1), 17–37 (2000). https://doi.org/10.1080/13640461.2000.11819385

    Article  CAS  Google Scholar 

  9. C. Do Lee, Variability in the impact properties of A356 aluminum alloy on microporosity variation. Mater. Sci. Eng.: A. 565, 187–195 (2013). https://doi.org/10.1016/j.msea.2012.12.029

    Article  CAS  Google Scholar 

  10. N.D. Alexopoulos, A. Stylianos, Impact mechanical behaviour of Al–7Si–Mg (A357) cast aluminum alloy the effect of artificial aging. Mater.s Sci. Eng. A 528(19–20), 6303–6312 (2011). https://doi.org/10.1016/j.msea.2011.04.086

    Article  CAS  Google Scholar 

  11. S. Shivkumar, L. Wang, C. Keller, Impact properties of A356–T6 alloys. J. Mater. Eng. Perform. 3(1), 83–90 (1994). https://doi.org/10.1007/bf0265450

    Article  CAS  Google Scholar 

  12. Z. Ma, A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Effect of Fe content on the fracture behaviour of Al–Si–Cu cast alloys. Mater. Des. 57, 366–373 (2014). https://doi.org/10.1016/j.matdes.2014.01.037

    Article  CAS  Google Scholar 

  13. S. Murali, K.S. Raman, K.S.S. Murthy, Effect of magnesium, iron (impurity) and solidification rates on the fracture toughness of Al 7Si 03 Mg casting alloy. Mater. Sci. Eng. A 151(1), 1–10 (1992). https://doi.org/10.1016/0921-5093(92)90175-Z

    Article  Google Scholar 

  14. C.H. Caceres, C.J. Davidson, J.R. Griffiths, Q.G. Wang, The effect of Mg on the microstructure and mechanical behavior of Al-Si-Mg casting alloys. Metall. and Mater. Trans. A. 30(10), 2611–2618 (1999). https://doi.org/10.1007/s11661-999-0301-8

    Article  Google Scholar 

  15. Y.G. Kim, H. Fujii, T. Tsumura, T. Komazaki, K. Nakata, Fracture behaviour of grain refined A356 cast aluminium alloy: tensile and Charpy impact specimens. Mater. Sci. Eng. A 415(1), 250–254 (2006)

    Article  Google Scholar 

  16. Q.G. Wang, C.H. Cáceres, The fracture mode in Al–Si–Mg casting alloys. Mater. Sci. Eng., A 241(1–2), 72–82 (1998). https://doi.org/10.1016/S0921-5093(97)00476-0

    Article  Google Scholar 

  17. A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg cast alloys. Mater. Des. 1980–2015(56), 264–273 (2014). https://doi.org/10.1016/j.matdes.2013.10.029

    Article  CAS  Google Scholar 

  18. E. Tillová, M. Chalupová, K. Borko, L. Kuchariková, Changes of fracture surface in recycled A356 cast alloy. Mater. Today: Proc. 3(4), 1183–1188 (2016). https://doi.org/10.1016/j.matpr.2016.03.009

    Article  Google Scholar 

  19. M. Merlin, G. Timelli, F. Bonollo, G.L. Garagnani, Impact behaviour of A356 alloy for low-pressure die casting automotive wheels. J. Mater. Process. Technol. 209(2), 1060–1073 (2009). https://doi.org/10.1016/j.jmatprotec.2008.03.027

    Article  CAS  Google Scholar 

  20. M. Lalpoor, D. G. Eskin, L. Katgerman, (2008) Investigation of fracture behavior of high strength aluminum alloys in the as-cast condition. In: Proceedings of the 11th International Conference on Aluminium Alloys, 22-26 September 2008, Aachen, Germany. Wiley: New Jersey

  21. W. D., Callister, D. G. Rethwisch, Materials science and engineering: an introduction, vol. 9 (Wiley, New York, 2018)

    Google Scholar 

  22. T.M. Osman, J. D. Rigney, (2000) Introduction to the mechanical behavior of metals, mechanical testing and evaluation. In: ASM Handbook. Vol. 8 p 35

  23. E. Aguirre-De la Torre, U. Afeltra, C.D. Gómez-Esparza, J. Camarillo-Cisneros, R. Pérez-Bustamante, R. Martínez-Sánchez, Grain refiner effect on the microstructure and mechanical properties of the A356 automotive wheels. J. Mater. Eng. Perform. 23, 581–587 (2014). https://doi.org/10.1007/s11665-013-0596-x

    Article  CAS  Google Scholar 

  24. P. Li, M.D. Maijer, T.C. Lindley, P.D. Lee, Simulating the residual stress in an A356 automotive wheel and its impact on fatigue life. Metall. Mater. Trans. B 38, 505–515 (2007). https://doi.org/10.1007/s11663-007-9050-5

    Article  CAS  Google Scholar 

  25. A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, On the impact properties and fracture mechanisms of A356.2 type cast alloys. Int. Metalcast 11, 766–777 (2017). https://doi.org/10.1007/s40962-016-0122-7

    Article  Google Scholar 

  26. K.A. Abuhasel, M.F. Ibrahim, E.M. Elgallad, F.H. Samuel, On the impact toughness of Al–Si cast alloys. Mater. Des. 91, 388–397 (2016). https://doi.org/10.1016/j.matdes.2015.11.072

    Article  CAS  Google Scholar 

  27. Z. Ma, A.M. Samuel, F.H. Samuel, H.W. Doty, Effect of Fe content and cooling rate on the impact toughness of cast 319 and 356 aluminum alloys. AFS Trans. 111, 255–265 (2003)

    CAS  Google Scholar 

  28. X.J. Yua, Y.L. Lub, F.X. Zhuc, X.C. Lid, Effect of heat treatment on microstructures and mechanical properties of A356 alloy by low pressure casting. Adv. Mater. Res. ISSN 1662–8985(1096), 319–324 (2015). https://doi.org/10.4028/www.scientific.net/amr.1096.319

    Article  Google Scholar 

  29. R. K. Nanstad, R. L. Swain, R. G. Berggren, Influence of thermal conditioning media on Charpy specimen test temperature. In Charpy Impact Test: Factors and Variables. ASTM International, (1990)

  30. E. Fiorese, F. Bonollo, G. Timelli, L. Arnberg, E. Gariboldi, New classification of defects and imperfections for aluminum alloy castings. Int. Metalcast 9, 55–66 (2015). https://doi.org/10.1007/BF03355602

    Article  Google Scholar 

  31. M. Djurdjevic, H. Jiang, J. Sokolowski, On-line prediction of aluminum-silicon eutectic modification level using thermal analysis /. Mater. Charact. 46, 31–38 (2001). https://doi.org/10.1016/s1044-5803(00)00090-5

    Article  CAS  Google Scholar 

  32. N. Tenekedjiev, H. Mulazimoglu, B. Closset, J. Gruzleski, Microstructures and thermal analysis of strontium-treated aluminum - silicon alloys (American Foundrymen’s Society Des Plaines, IL, USA, 1995)

    Google Scholar 

  33. M. Warmuzek, 2004. Aluminium–Silicon Casting Alloys: Atlas of Microfractographs, 1st ed. ASM International, (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paşa Yayla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmahti, Ü., Kaya, A.Y., Özaydın, O. et al. Impact Test Analysis of Aluminum Alloy Wheels Under Different Temperature. Inter Metalcast 17, 1129–1138 (2023). https://doi.org/10.1007/s40962-022-00845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00845-2

Keywords

Navigation