Skip to main content
Log in

New Classification of Defects and Imperfections for Aluminum Alloy Castings

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In recent years, aluminum alloys have become more and more relevant because of their low density, coupled with good mechanical and corrosion properties. Different processes are available for the production of aluminum alloy components, such as rolling, extrusion, and powder metallurgy, but a significant role is played by foundry processes. Defects and imperfections are physiologically generated by different casting techniques as a result of the process stages, alloy properties and die or mold design.

In the present work, a multi-level classification of structural defects and imperfections in Al alloy castings is proposed. The first level distinguishes defects on the basis of their location (internal, external, or geometrical), the second level distinguishes on the basis of their metallurgical origin, while the third level refers to the specific type of defect, because the same metallurgical phenomenon may generate various defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cocks, D.L., “A Proposed Simple Qualitative Classification for Die-Casting Defects,” Proc. Die-casting Conference, Montreaux, pp. 19/1-19/15 (1996).

  2. Campbell, J., Harding, R.A., “Casting Technology,” TALAT 2.0 CD-ROM, EAA, Brussels (2000).

  3. Campbell, J., “Castings,” Elsevier Science Ltd., Oxford (2003).

    Google Scholar 

  4. Walkington, W.G., “Die Casting Defects — Causes and Solutions,” North American Die Casting Association (1997).

  5. European Standard for products made from aluminum & aluminum alloys “EN 12258-1:2012” Standard (2012).

  6. Gariboldi, E., Bonollo, F., Rosso, M., “Proposal of a Classification of Defects of High-Pressure Diecast Products,” La Metallurgia Italiana, vol. 99, p. 39 (2007).

    Google Scholar 

  7. Flemings, M.C., “Solidification Processing,” McGraw-Hill, NY (1974).

    Google Scholar 

  8. “ASM Metals Handbook,” 10th ed., vol. 15, “Casting,” ASM — Metals Park, Ohio (1990).

  9. Di Russo, E., “Metallographic Atlas of Al Foundry Alloys,” Edimet, Brescia (1991).

    Google Scholar 

  10. Brown, J.R., “Non-Ferrous Foundryman’s Handbook,” Butterworth, Oxford (1999).

    Google Scholar 

  11. Kubo, K., Pehlke, R.D., “Mathematical Modeling of Porosity Formation in Solidification,” Metall. Trans. B, vol. 16, pp. 359–366 (1985).

    Article  Google Scholar 

  12. Timelli, G., Bonollo, F., “Microstructure, Defects and Properties in Aluminum Alloys Castings: A Review,” Proc. Int. Conf. Aluminium Two Thousand, Firenze (2007).

  13. Lee, P.D., Chirazi, A., See, D., “Modeling Microporosity in Aluminum-Silicon Alloys: A Review,” J. Light Met., vol. 1, issue 1, pp. 15–30 (2001).

    Article  Google Scholar 

  14. Lee, Y.W., Chang, E., Chieu, C.F., “Modeling of Feeding Behavior of Solidifying Al-7Si-0.3Mg Alloy Plate Casting,” Metall. Trans. B, vol. 21, issue 4, pp. 715–722 (1990).

    Article  Google Scholar 

  15. Mathiesen, R.H., Arnberg, L., Ramsoskar, K., “Time Resolved X-Ray Imaging of Aluminum Alloy Solidification Processes,” Metall. Mat. Trans B, vol. 33, issue 4, pp. 613–623 (2002).

    Article  Google Scholar 

  16. Anson, J.P., Gruzleski, J.E., “The Quantitative Discrimination between Shrinkage and Gas Microporosity in Cast Aluminum Alloys Using Spatial Data Analysis,” Mater. Charact., vol. 43, issue 5, pp. 319–335 (1999).

    Article  Google Scholar 

  17. Shin, T.-S., Huang, L.-W., Chen, Y.-J., “Relative Porosity in Aluminium and Aluminium Alloys,” Int. J. Cast Met. Res., vol. 18, pp. 301–308 (2005).

    Article  Google Scholar 

  18. Shang, L.H., Paray, F., Gruzleski, J.E., Bergeron, S., Mercadante, C., Loong, C.A., “Prediction of Microporosity in Al-Si Castings in Low Pressure Permanent Mould Casting Using Criteria Functions,” Int. J. Cast Metals Res., vol. 17, pp. 193–200 (2004).

    Article  Google Scholar 

  19. Wang, Q.G., Apelian, D., Lados, D.A., “Fatigue Behaviour of A356-T6 Aluminum Cast Alloys. Part I. Effect of Casting Defects,” J. Light Met., vol. 1, issue 1, pp. 73–84 (2001).

    Article  Google Scholar 

  20. Wang, Q.G., Apelian, D., Lados, D.A., “Fatigue Behaviour of A356/357 Aluminum Cast Alloys. Part II — Effect of Microstructural Constituents,” J. Light Met., vol. 1, issue 1, pp. 85–97 (2001).

    Article  Google Scholar 

  21. Francis, J.A., Cantin, G.M.D., “The Role of Defects in the Fracture of an Al-Si-Mg Cast Alloy,” Mater. Sci. Eng. A, vol. 407, issue 1–2, pp. 322–329 (2005).

    Article  Google Scholar 

  22. Akhtar, S., Arnberg, L., Di Sabatino, M., Timelli, G., Bonollo, F., “A Comparative Study of Defects and Mechanical Properties in High Pressure Die Cast and Gravity Die Cast Aluminium Alloys,” Int. Foundry Research, issue 2, pp. 36–48 (2009).

  23. Merlin, M., Timelli, G., Bonollo, F., Garagnani, G.L., “Impact Behaviour of A356 alloy for Low-Pressure Die Casting Automotive Wheels,” J. Mater. Process. Technol., vol. 209, issue 2, pp. 1060–1073 (2009).

    Article  Google Scholar 

  24. Dai, X., Yang, X., Campbell, J., Wood, J., “Effects of Runner System Design on the Mechanical Strength of Al-7Si-Mg Alloy Castings,” Mater. Sci. Eng. A, vol. 354, issues 1–2, pp. 315–325 (2003).

    Article  Google Scholar 

  25. Cáceres, C.H., Selling, B.I., “Casting Defects and the Tensile Properties of an Al-Si-Mg Alloy”, Mater. Sci. Eng. A, vol. 220, pp. 109–116 (1996).

    Article  Google Scholar 

  26. Avalle, M., Belingardi, G., Cavatorta, M.P., Doglione, R., “Casting Defects and Fatigue Strength of a Die Cast Aluminium Alloy: A Comparison Between Standard Specimens and Production Components,” Int. J. Fatigue, vol. 24, pp. 1–9 (2002).

    Article  Google Scholar 

  27. Cáceres, C.H., “A Phenomenological Approach to the Quality Index of Al-Si-Mg Casting Alloys,” Int. J. Cast Metals Res., vol. 12, pp. 367–375 (2000).

    Google Scholar 

  28. Cáceres, C.H., “A Rationale for the Quality Index of Al-Si-Mg Casting Alloys,” Int. J. Cast Metals Res., vol. 12, pp. 385–391 (2000).

    Google Scholar 

  29. Verran, G.O., Mendes, R.P.K., Rossi, M.A., “Influence of Injection Parameters on Defects Formation in Die Casting Al12Si1,3Cu Alloy: Experimental Results and Numeric Simulation,” J. Mater. Process. Technol., vol. 179, pp. 190–195 (2006).

    Article  Google Scholar 

  30. Campbell, J., “Materials Perspective, Entrainment Defects,” Mater. Sci. Technol., vol. 22, no. 2, pp. 132–136 (2006).

    Article  Google Scholar 

  31. Faura, F., López, J., Hernández, J., “On the Optimum Plunger Acceleration Law in the Slow Shot Phase of Pressure Die Casting Machines,” Int. J. Mach. Tools Manuf., vol. 41, issue 2, pp. 173–191 (2001).

    Article  Google Scholar 

  32. Timelli, G., Bonollo, F., “Quality Mapping of Aluminium Alloy Diecastings,” Metall. Science and Technol., vol. 26, issue 1, pp. 2–8 (2008).

    Google Scholar 

  33. Timelli, G., Bonollo, F., Cupitò, G., “The Impact of Defects on the Quality of Aluminium Alloys Die Castings,” ATA — Ingegneria dell’autoveicolo, 62(1/2), pp. 12–19 (2009).

    Google Scholar 

  34. Yi, J.Z., “Statistical Modeling of Microstructure and Defect Population Effects on the Fatigue Performance of Cast A356-T6 Automotive Components,” Mat. Sci. Eng., vol. 432, issues 1–2, pp. 59–68 (2006).

    Article  Google Scholar 

  35. Wang, Q.G., “Oxide Films, Pores and the Fatigue Lives of Cast Aluminum Alloys,” Metall. Mater. Trans. B., vol. 37, issue 6, pp. 887–895 (2006).

    Article  Google Scholar 

  36. American Foundry Society, “International Atlas of Casting Defects,” pp. 81–87 (1999).

  37. Moores, A.W., et al. “New Device for the Determination of Hydrogen Concentration in Aluminum Alloys,” AFS Transactions, vol. 113, pp. 265–274 (2005).

    Google Scholar 

  38. Marcolongo, P., Evans, J.W., Steingart, D.A., Bonollo, F., “New Probe to Detect Gas Bubbles — Part 1,” Pressocolata e Tecniche Fusorie, 2, pp. 117–121 (2007).

    Google Scholar 

  39. Marcolongo, P., Evans, J.W., Steingart, D., Bonollo, F., “New Probe to Detect Gas Bubbles — Part 2,” Pressocolata e Tecniche Fusorie, 2, pp. 96–101 (2007).

    Google Scholar 

  40. Atwood, R.C., “Diffusion-Controlled Growth of Hydrogen Pores in Al-Si Castings: In Situ Observation and Modelling,” Acta Mater., vol. 48, issue 2, pp. 405–417 (2000).

    Article  Google Scholar 

  41. Chen, X.G., Gruzleski, J.E., “Influence of Melt Cleanliness on Pore Formation in Aluminium-Silicon Alloys,” Int. J. Cast Metals Res., vol. 9, pp. 17–26 (1996).

    Google Scholar 

  42. Yang, X., Huang, X., Dai, X., Campbell, J., Tatler, J., “Numerical Modelling of Entrainment of Oxide Film Defects in Filling of Aluminium Alloy Castings,” Int. J. Cast Metals Res., vol. 17, pp. 321–331 (2004).

    Article  Google Scholar 

  43. Dai, X., Yang, X., Campbell, J., Wood, J., “Influence of Oxide Film Defects Generated in Filling on Mechanical Strength of Aluminium Alloy Castings,” Mater. Sci. Technol., vol. 20, issue 4, pp. 505–513 (2004).

    Article  Google Scholar 

  44. Fox, S., Campbell, J., “Visualisation of Oxide Film Defects During Solidification of Aluminium Alloys,” Scripta Mater., vol. 43, issue 10, pp. 881–886 (2000).

    Article  Google Scholar 

  45. Dispinar, D., Campbell, J., “Use of Bifilm Index as an Assessment of Liquid Metal Quality,” Int. J. Cast Metals Res., vol. 19, pp. 5–17 (2006).

    Article  Google Scholar 

  46. Campbell, J., “An Overview of the Effects of Bifilms on the Structure and Properties of Cast Alloys,” Metall. and Mater. Trans. B, vol. 37, issue 6, pp. 857–863 (2006).

    Article  Google Scholar 

  47. Espinoza-Cuadra, J., Garcia-Garcia, G., Mancha-Molinar, H., “Influence of Defects on Strength of Industrial Aluminum Alloy Al-Si 319,” Materials & Design, vol. 28, issue 3, pp. 1038–1044 (2007).

    Article  Google Scholar 

  48. Aziz Ahamed, A.K.M., Kato, H., Kageyama, K., Komazaki, T., “Acoustic Visualization of Cold Flakes and Crack Propagation in Aluminum Alloy Die-Cast Plate,” Mater. Sci. Eng., A, vol. 423, issues 1–2, pp. 313–323 (2006).

    Article  Google Scholar 

  49. Liu, F., Samuel, F.H., “Effect of Inclusions on the Tensile Properties of Al-7%Si-0.35% Mg (A356.2) Aluminium Casting Alloy,” J. Mat. Sci., vol. 33, pp. 2269–2281 (1998).

    Article  Google Scholar 

  50. Seniw, M., Conley, J., Fine, M., “The Effect of Microscopic Inclusion Locations and Silicon Segregation on Fatigue Lifetimes of Aluminum Alloy A356 Castings,” Mat. Sci. Eng., A, vol. 285, pp. 43–48 (2000).

    Article  Google Scholar 

  51. Wang, L., Makhlouf, M., Apelian, D., “Aluminum Die-Casting Alloys — Alloy Composition, Microstructure, and Properties/Performance Relationship,” Int. Materials Review, vol. 40, pp. 221–238 (1995).

    Article  Google Scholar 

  52. Timelli, G., Lohne, O., Arnberg, L., Laukli, H.I., “Effect of Solution Heat Treatments on the Microstructure and Mechanical Properties of a Die-Cast AlSi7MgMn Alloy,” Metall. Mater. Trans. A, vol. 39, issue 7, pp. 1747–1758 (2008).

    Article  Google Scholar 

  53. Battle, T.P., “Mathematical Modelling of Solute Segregation in Solidifying Materials,” Int. Mater. Rev., vol. 37, issue 1, pp. 249–270 (1992).

    Article  Google Scholar 

  54. Farupi, J., Drezet, J.M., Rappaz, M., “In Situ Observation of Hot Tearing Formation in Succilonitrile-Acetone,” Acta Mater. vol. 49, issue 7, pp. 1261–1269 (2001).

    Article  Google Scholar 

  55. Yan, X., Lin, J.C., “Prediction of Hot Tearing Tendency for Multicomponent Aluminum Alloys,” Metall. And Mater. Trans. B., vol. 37, issue 6, pp. 913–918 (2006).

    Article  Google Scholar 

  56. Knuutinen, A., Nogita, K., McDonald, S.D., Dahle, A.K., “Porosity Formation in Aluminium Alloy A356 Modified with Ba, Ca, Y and Yb,” J. Light Metals, vol. 1, issue 4, pp. 241–249 (2001).

    Article  Google Scholar 

  57. Niu, X.P., Hua, B.H., Pinwilla, I., Lib, H., “Vacuum Assisted High Pressure Die Casting of Aluminium Alloys,” J. Mater. Process. Technol., vol. 105, pp. 119–127 (2000).

    Article  Google Scholar 

  58. Kosec, B., Kosec, L., Kopac, J., “Analysis of Casting Die Failures,” Eng. Failure Analysis, vol. 8, issue 4, pp. 355–359 (2001).

    Article  Google Scholar 

  59. Chen, Z.W., Jahedi, M.Z., “Die Erosion and its Effect on Soldering Formation in High Pressure Die Casting of Aluminium Alloys,” Mater. Des., vol. 20, issue 6, pp. 303–309 (1999).

    Article  Google Scholar 

  60. Mitterer, C., Holler, F., Üstel, F., Heim, D., “Application of Hard Coatings in Aluminium Die Casting — Soldering, Erosion and Thermal Fatigue Behaviour,” Surf. Coat. Technol., vol. 125, issues 1–3, pp. 233–239 (2000).

    Article  Google Scholar 

  61. Gulizia, S., Jahedi, M.Z., Doyle, E.D., “Performance Evaluation of PVD Coatings for High Pressure Die Casting,” Surf. Coat. Technol., vol. 140, issue 3, pp. 200–205 (2001).

    Article  Google Scholar 

  62. Domkin, K., Hattel, J.H., Thorborg, J., “Modeling of High Temperature- and Diffusion-Controlled Die Soldering in Aluminum High Pressure Die Casting,” J. Mater. Process. Technol., vol. 209, issue 8, pp. 4051–4061 (2009).

    Article  Google Scholar 

  63. Zhu, H., Guo, J., Ji, J., “Experimental Study and Theoretical Analysis on Die Soldering in Aluminum Die Casting,” J. Mater. Process. Technol., vol. 123, issue 2, pp. 229–235 (2002).

    Article  Google Scholar 

  64. Joshi, V., Srivastava, A., Shivpuri, R., “Intermetallic Formation and its Relation to Interface Mass Loss and Tribology in Die Casting Dies,” Wear, vol. 256, issues 11–12, pp. 1232–1235 (2004).

    Article  Google Scholar 

  65. Tentardini, E.K., et al., “Soldering Mechanisms in Materials and Coatings for Aluminum Die Casting,” Surf. Coat,. Technol., vol. 202, issue 16, pp. 3764–3771 (2008).

    Article  Google Scholar 

  66. Zhu, Y., Schwam, D., Wallace, J.F., Birceanu, S., “Evaluation of Soldering, Washout and Thermal Fatigue Resistance of Advanced Metal Materials for Aluminum Die-Casting Dies,” Mater. Sci. Eng., A, vol. 379, issues 1–2, pp. 420–431 (2004).

    Article  Google Scholar 

  67. Shankar, S., Apelian, D., “Die Soldering: Mechanism of the Interface Reaction between Molten Aluminum Alloy and Tool Steel,” Metall. Mater. Trans. B, vol. 33, pp. 465–476 (2002).

    Article  Google Scholar 

  68. Sundqvist, M., Hogmark, S., “The Mechanisms of Erosive Wear of Die Casting Dies for Aluminium,” Proceedings of the Int. European Conf. on Tooling Materials, pp. 453–466 (1992).

  69. Bernacchi, E., Ferrero, A., Gariboldi, G., Korovkin, A., Pontini, G., “PVD Coatings in Aluminium Die Casting Dies and Steel Forming Tools,” Metall. Sci. and Tech., vol. 14, issue 1, pp. 3–11 (1996).

    Google Scholar 

  70. Bucci, M., “Analysis of Defects in Machined High-Pressure Die-Castings of AlSi12Cu2Fe Alloy,” MS thesis, University of Padova (1998).

  71. Persson, A., Hogmark, S., Bergstrom, J., “Failure Modes in Field-Tested Die Casting Dies,” J. Mater. Process. Technol., vol. 148, pp. 108–118 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorese, E., Bonollo, F., Timelli, G. et al. New Classification of Defects and Imperfections for Aluminum Alloy Castings. Inter Metalcast 9, 55–66 (2015). https://doi.org/10.1007/BF03355602

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03355602

Keywords

Navigation