Skip to main content
Log in

Effect of Austempering Times on the Microstructures and Mechanical Properties of Dual-Matrix Structure Austempered Ductile Iron (DMS-ADI)

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, the effect of the austempering times on the microstructures and mechanical properties of dual-matrix structure austempered ductile iron (DMS-ADI) was investigated. With this aim, unalloyed as-cast ductile iron tensile samples were austenitized at 810 °C for 30 min to intercritical austenitizing followed by austempering at 350°C for various austempering times (45 min to 180 min). Experimental results showed that dual-matrix structures consisting of proeutectoid ferrite + ausferrite were obtained in austempered ductile iron from intercritical austenitizing temperatures. It was determined that as the austempering time increased, the ausferritic structure became considerably clear and its volume fraction was almost constant (45–47%) after 90 min of austempering time. The yield and tensile strength of the samples decreased and the total elongation and breaking energy increased with increasing austempering times, but after the 120-min austempering time, both the total elongation and breaking energy of the samples decreased. It was established that the austempering times had no significant effect on the morphology of ausferrite. The best mechanical properties were obtained between 70- and 130-minute austempering times that can be defined as the processing window. In addition, it was determined that the DMS-ADI had similar austempering kinetics with the ADI.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Availability of Data and Material

The raw data cannot be shared at this time as the data are also part of an ongoing study.

References

  1. V. Kilicli, M. Erdogan, Mater. Sci. Technol. 22, 919 (2006)

    CAS  Google Scholar 

  2. V. Kilicli, M. Erdogan, Int. J. Cast Metals Res. 20, 202 (2007)

    CAS  Google Scholar 

  3. V. Kilicli, M. Erdogan, J. Mater. Eng. Perform. 17, 240 (2008)

    CAS  Google Scholar 

  4. V. Kilicli, M. Erdogan, J. Mater. Eng. Perform. 19, 142 (2010)

    CAS  Google Scholar 

  5. M. Erdogan, V. Kilicli, B. Demir, Int. J. Mater. Res. 99, 751 (2008)

    CAS  Google Scholar 

  6. M. Erdogan, V. Kilicli, B. Demir, J. Mater. Sci. 44, 1394 (2009)

    CAS  Google Scholar 

  7. I. Ovali, V. Kilicli, M. Erdogan, ISIJ Int. 53, 375 (2013)

    CAS  Google Scholar 

  8. I. Ovali, A. Mavi, Int. J. Mater. Res. 104, 192 (2013)

    Google Scholar 

  9. A. Basso, J. Sikora, Int. J. Metalcast. 6, 7–14 (2012). https://doi.org/10.1007/BF03355473.

    Article  CAS  Google Scholar 

  10. A. Basso, M. Caldera, M. Chapetti, J. Sikora, ISIJ Int. 50, 302 (2010)

    CAS  Google Scholar 

  11. A. Basso, M. Caldera, J. Massone, ISIJ Int. 55, 1106 (2015)

    CAS  Google Scholar 

  12. A. Basso, M. Caldera, G. Rivera, J. Sikora, ISIJ Int. 52, 1130 (2012)

    CAS  Google Scholar 

  13. A. Basso, R. Martinez, J. Sikora, Mater. Sci. Technol. 25, 1271 (2009)

    CAS  Google Scholar 

  14. A.D. Basso, A.L.D. Pra, M.D. Echeverria, A.D. Sosa, Int. J. Cast. Metals Res. 31, 144 (2017)

    Google Scholar 

  15. A.D. Basso, A.L.D. Pra, M.D. Echeverria, A.D. Sosa, Int. J. Cast. Metals Res. 31, 144 (2018)

    CAS  Google Scholar 

  16. D.A. Colombo, R.C. Dommarco, A.D. Basso, Wear 418, 208 (2019)

    Google Scholar 

  17. Y. Sahin, M. Erdogan, V. Kilicli, Mater. Sci. Eng. A 444, 31 (2007)

    Google Scholar 

  18. Y. Sahin, V. Kilicli, M. Ozer, M. Erdogan, Wear 268, 153 (2010)

    CAS  Google Scholar 

  19. A. Rashidi, M. Moshrefi-Torbati, Int. J. Cast. Metals Res. 13, 293 (2001)

    CAS  Google Scholar 

  20. A.M. Rashidi, M. Moshrefi-Torbati, Mater. Lett. 45, 203 (2000)

    CAS  Google Scholar 

  21. M. Soliman, H. Palkowski, A. Nofal, Int. J. Metalcast. 14, 853–860 (2020). https://doi.org/10.1007/s40962-020-00477-4

    Article  CAS  Google Scholar 

  22. M. Soliman, H. Palkowski, A. Nofal, Arch. Metal. Mater. 62, 1493–1498 (2017)

    CAS  Google Scholar 

  23. R. Aristizabal, R. Foley, A. Druschitz, Int. J. Metalcast. 6, 7–14 (2012). https://doi.org/10.1007/BF03355534

    Article  Google Scholar 

  24. S. Panneerselvam, S.K. Putatunda, R. Gundlach, J. Boileau, Mater. Sci. Eng. A 694, 72 (2017)

    CAS  Google Scholar 

  25. W.L. Guesser, C.L. Lopes, P.A.N. Bernardini, Int. J. Metalcast. 14, 717–727 (2020). https://doi.org/10.1007/s40962-019-00397-y

    Article  CAS  Google Scholar 

  26. H.D. Machado, R. Aristizabal-Sierra, C. Garcia-Mateo, I. Toda-Caraballo, Int. J. Metalcast. 14, 836–845 (2020). https://doi.org/10.1007/s40962-020-00450-1

    Article  CAS  Google Scholar 

  27. N.E. Tenaglia, D.I. Pedro, R.E. Boeri, A.D. Basso, Int. J. Cast. Metals Res. 33, 72 (2020)

    CAS  Google Scholar 

  28. F. Zanardi, C. Mapelli, S. Barella, Int. J. Metalcast. 14, 622–655 (2020). https://doi.org/10.1007/s40962-020-00454-x

    Article  CAS  Google Scholar 

  29. A. Druschitz, M. Ostrander, R. Aristizabal, In 71st World Foundry Congress (Bilbao, Spain, 2014).

    Google Scholar 

  30. A. Druschitz, R. Aristizabal, E. Druschitz, C. Hubbard, T. Watkins, SAE Int. J. Mater. Manuf. 4, 111 (2011)

    Google Scholar 

  31. A. Druschitz, M. Ostrander, R. Aristizabal, SAE Technical Paper 01-0950, (2013).

  32. A. Druschitz, R.E. Aristizabal, E. Druschitz, C.R. Hubbard, T.R. Watkins, L. Walker, M. Ostrander, Metall. Mater. Trans. A. 43, 1468 (2012)

    CAS  Google Scholar 

  33. R. Voigt, L. Eldoky, H. Chiou, AFS Trans. 94, 645 (1986)

    CAS  Google Scholar 

  34. N. Wade, Y. Ueda, Trans. Iron Steel Inst. Jpn. 21, 119 (1981)

    Google Scholar 

  35. A. Basso, R. Martinez, J. Sikora, Mater. Sci. Technol. 23, 1321 (2007)

    CAS  Google Scholar 

  36. A. Basso, R. Martinez, J. Sikora, J. Alloy. Compd. 509, 9884 (2011)

    CAS  Google Scholar 

  37. T. Kobayashi, S. Yamada, Metall. Mater. Trans. A 27, 1961 (1996)

    Google Scholar 

  38. S.K. Putatunda, P.K. Gadicherla, Mater. Sci. Eng. A 268, 15 (1999)

    Google Scholar 

  39. B. Kovacs, J. Heat. Treat. 5, 55 (1987)

    CAS  Google Scholar 

  40. B.V. Kovacs Sr., Mod. Cast. 80, 38 (1990)

    CAS  Google Scholar 

  41. A. Nofal, J. Metal. Eng. 2, 1 (2013)

  42. A. Nofal, L. Jekova, J. Chem. Technol. Metall. 44, 213 (2009)

    CAS  Google Scholar 

  43. J. Olawale, K. Oluwasegun, Mater. Perform. Charac. 5, 289 (2016)

    CAS  Google Scholar 

  44. S.K. Putatunda, P.K. Gadicherla, J. Mater. Eng. Perform. 9, 193 (2000)

    CAS  Google Scholar 

  45. P.P. Rao, S.K. Putatunda, Metall. Mater. Trans. A 28, 1457 (1997)

    Google Scholar 

  46. P.P. Rao, S.K. Putatunda, Metall. Mater. Trans. A 29, 3005 (1998)

    Google Scholar 

  47. B. Wang, G.C. Barber, F. Qiu, Q. Zou, H. Yang, J. Mater. Res. Technol-JMRT 9, 1054 (2020)

    CAS  Google Scholar 

  48. C. Wang, R. Liu, S. Li, C. Gu, X. Du, Y. Sun, J. Tian, Mater. Sci. Technol. 35, 1329 (2019)

    CAS  Google Scholar 

  49. M. Yalcin, B. Cetin, K. Davut, Acta Phys. Pol. A 135, 829–833 (2019)

    CAS  Google Scholar 

  50. Y. Sahin, V. Kilicli, Wear 271, 2766 (2011)

    CAS  Google Scholar 

  51. P. Sellamuthu, D. Samuel, D. Dinakaran, V. Premkumar, Z. Li, S. Seetharaman, Metals 8, 53 (2018)

    Google Scholar 

  52. H. Zhang, Y.X. Wu, Q.J. Li, X. Hong, Wear 406, 156 (2018)

    Google Scholar 

  53. X. Wang, Y. Du, B. Liu, B. Jiang, Mater. Sci. Eng. A 804, 140513 (2020)

    Google Scholar 

  54. M. Baydogan, H. Cimenoglu, Scan. J. Metall. 30, 391 (2001)

    CAS  Google Scholar 

  55. M.C. Cakir, A. Bayram, Y. Isik, B. Salar, Mater. Sci. Eng. A 407, 147 (2005)

    Google Scholar 

  56. Y. Du, X. Gao, X. Wang, X. Wang, Y. Ge, B. Jiang, Wear 456, 203396 (2020)

    Google Scholar 

  57. J.O. Olawale, S.A. Ibitoye, K.M. Oluwasegun, M.D. Shittu, A.P.I. Popoola, Int. J. Metalcast. 11, 568–580 (2017). https://doi.org/10.1007/s40962-016-0114-7

    Article  Google Scholar 

  58. A. Basso, J. Sikora, R. Martinez, Fatigue Fract. Eng. Mater. Struct. 36, 650 (2013)

    CAS  Google Scholar 

  59. M. Soliman, H. Ibrahim, A. Nofal, H. Palkowski, Int. J. Cast. Metals Res. 29, 79 (2016)

    CAS  Google Scholar 

  60. S. Yazdani, R. Elliott, Mater. Sci. Technol. 15, 531 (1999)

    CAS  Google Scholar 

  61. ASTM 975–13, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation (ASTM International, USA, 2003).

    Google Scholar 

  62. C. Roberts, J. Metals 5, 203 (1953)

    Google Scholar 

  63. R.C. Voigt, C. Loper, J. Heat. Treat. 3, 291 (1984)

    CAS  Google Scholar 

  64. J. Aranzabal, I. Gutierrez, J. Rodriguez-Ibabe, J. Urcola, Metall. Mater. Trans. A 28, 1143 (1997)

    Google Scholar 

  65. M. Bahmani, R. Elliott, N. Varahram, J. Mater. Sci. 32, 4783 (1997)

    CAS  Google Scholar 

  66. A. Refaey, N. Fatahalla, J. Mater. Sci. 38, 351 (2003)

    CAS  Google Scholar 

  67. S. Murcia, M. Paniagua, E. Ossa, Mater. Sci. Eng. A 566, 8 (2013)

    CAS  Google Scholar 

  68. O. Erić, D. Rajnović, S. Zec, L. Sidjanin, M.T. Jovanović, Mater. Charact. 57, 211 (2006)

    Google Scholar 

  69. J. Aranzabal, I. Gutierrez, J.M. Rodriguezibabe, J.J. Urcola, Mater. Sci. Technol. 8, 263 (1992)

    CAS  Google Scholar 

  70. J. Aranzabal, I. Gutierrez, J.J. Urcola, Mater. Sci. Technol. 10, 728 (1994)

    CAS  Google Scholar 

  71. S. Yazdani, R. Elliott, Mater. Sci. Technol. 15, 541 (1999)

    CAS  Google Scholar 

  72. S. Yazdani, R. Elliott, Mater. Sci. Technol. 15, 885 (1999)

    CAS  Google Scholar 

  73. S. Yazdani, R. Elliott, Mater. Sci. Technol. 15, 896 (1999)

    CAS  Google Scholar 

  74. G. Artola, I. Gallastegi, J. Izaga, M. Barreña, A. Rimmer, Int. J. Metalcast. 11, 131–135 (2017). https://doi.org/10.1007/s40962-016-0085-8

    Article  Google Scholar 

  75. A.S. Benam, China Foundry 12, 54 (2015)

    Google Scholar 

  76. P. Shanmugam, P.P. Rao, K.R. Udupa, N. Venkataraman, J. Mater. Sci. 29, 4933 (1994)

    CAS  Google Scholar 

  77. C. Yang, X. Cui, C. Liu, Mater. Sci. Technol. 34, 261 (2018)

    CAS  Google Scholar 

  78. O. Eric, L. Sidjanin, Z. Miskovic, S. Zec, M. Jovanovic, Mater. Lett. 58, 2707 (2004)

    CAS  Google Scholar 

  79. M. Górny, G. Angella, E. Tyrała, M. Kawalec, S. Paź, A. Kmita, Met. Mater. Int. 25, 956 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gazi University Scientific Research Projects Coordination Unit for financial support of the study.

Funding

This work was supported by the Gazi University Scientific Research Projects Coordination Unit under Grant numbers 07/2020-17 and 07/2020-19.

Author information

Authors and Affiliations

Authors

Contributions

AU was involved in experimental studies (casting and heat treatments), investigation, creating figures, and writing. OS was involved in experimental studies (mechanical tests and microstructural characterization), investigation, creating figures, and writing. BN was involved in experimental studies (XRD analysis and high-carbon retained austenite calculation), investigation, creating figures, and writing. VK was involved in conceptualization, writing and editing, project administration, and funding acquisition.

Corresponding author

Correspondence to Volkan Kilicli.

Ethics declarations

Conflict of interest

The authors declare to have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uyar, A., Sahin, O., Nalcaci, B. et al. Effect of Austempering Times on the Microstructures and Mechanical Properties of Dual-Matrix Structure Austempered Ductile Iron (DMS-ADI). Inter Metalcast 16, 407–418 (2022). https://doi.org/10.1007/s40962-021-00617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00617-4

Keywords

Navigation