Skip to main content
Log in

Probabilistic Cellular Automata for Granular Media in Video Games

  • Research
  • Published:
The Computer Games Journal

Abstract

Granular materials are very common in the everyday world. Media such as sand, soil, gravel, food stuffs, pharmaceuticals, etc. all have similar irregular flow since they are composed of numerous small solid particles. In video games, simulating these materials increases immersion and can be used for various game mechanics. Computationally, full scale simulation is not typically feasible except on the most powerful hardware and tends to be reduced in priority to favor other, more integral, gameplay features. Here we study the computational and qualitative aspects of side profile flow of sand-like particles using cellular automata (CA). Our CA uses a standard square lattice that updates via a custom, modified Margolus neighborhood. Each update occurs using a set of probabilistic transitions that can be tuned to simulate friction between particles. We focus on the look of the sandpile structure created from an hourglass shape over time using different transition probabilities and the computational impact of such a simulation. The toppling behavior and final structure of the sandpiles are largely dependent on the chosen probabilities. As the probability to topple decreases, representing greater friction, elongated sandpiles begin to form, leading to longer settling times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Upon Request

References

  • Bak, P., & Paczuski, M. (1995). Complexity, contingency, and criticality. Proceedings of the National Academy of Sciences, 92(15), 6689–6696.

    Article  Google Scholar 

  • Bak, P., Tang, C., & Wiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 59(4), 381–384.

    Article  Google Scholar 

  • Bay 12 Games. (2006). Slaves to Armok: God of Blood Chapter II: Dwarf Fortress.

  • Biskup, T. (1994). Ancient domains of mystery.

  • Boen, N., (2016). Simulating Large Volumes of Granular Matter, MS Thesis, Kansas State University, Manhattan.

  • Cervelle, J., Formenti, E., & Masson, B. (2007). From sandpiles to sand automata. Theoretical Computer Science, 381(1–3), 1–28.

    Article  MathSciNet  Google Scholar 

  • Chopard, B. (2012). Cellular Automata Modeling of Physical Systems. In R. Meyers (Ed.), Computational Complexity. New York: Springer.

    Google Scholar 

  • Dennunzio, A., Guillon, P., & Masson, B. (2009). Sand automata as cellular automata. Theoretical Computer Science, 410(38–40), 3962–3974.

    Article  MathSciNet  Google Scholar 

  • Fersula, J., Noûs, C. and Perrot, K., 2020. Sandpile toppling on Penrose tilings: identity and isotropic dynamics. arXiv:2006.06254 [nlin]. [online] Available at: https://arxiv.org/abs/2006.06254

  • Formenti, E., Perrot, K., & Remila, E. (2016). Computational complexity of the avalanche problem for one dimensional decreasing sandpiles. Journal of Cellular Automata, 13(3), 215–228.

    MathSciNet  MATH  Google Scholar 

  • Frisch, U., Hasslacher, B., & Pomeau, Y. (1986). Lattice-Gas Automata for the Navier-Stokes Equation. Physical Review Letters, 56(14), 1505–1508.

    Article  Google Scholar 

  • Gálvez, G., & Muñoz, A. (2017). Three-dimensional cellular automata as a model of a seismic fault. Journal of Physics: Conference Series, 792, 012087.

    Google Scholar 

  • Gardner, M. (1970). Mathematical games. Scientific American, 223(4), 120–123.

    Article  Google Scholar 

  • Gasior, J. and Seredynski, F., 2016. A Sandpile Cellular Automata-Based Approach to Dynamic Job Scheduling in Cloud Environment. In Parallel Processing and Applied Mathematics, pp.497–506.

  • Goles, E., & Kiwi, M. (1993). Games on line graphs and sand piles. Theoretical Computer Science, 115(2), 321–349.

    Article  MathSciNet  Google Scholar 

  • Greenberg, J., & Hastings, S. (1978). Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics, 34(3), 515–523.

    Article  MathSciNet  Google Scholar 

  • Hardy, J., de Pazzis, O., & Pomeau, Y. (1976). Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions. Physical Review A, 13(5), 1949–1961.

    Article  Google Scholar 

  • Klei Entertainment. (2017). Oxygen Not Included.

  • Lang, M. and Shkolnikov, M., 2019. Harmonic dynamics of the abelian sandpile. In Proceedings of the National Academy of Sciences, [online] 116(8), pp.2821–2830.

  • Louis, P.-Y., & Nardi, F. R. (Eds.). (2018). Probabilistic cellular automata. emergence, complexity and computation. Cham: Springer International Publishing.

    Google Scholar 

  • Ludeon Studios. (2018). Rimworld.

  • Maxis. (1989). Sim City.

  • Mojang Studios. (2011). Minecraft.

  • Mythos Games. (1994). UFO: Enemy Unknown.

  • Nolla Games. (2019). Noita.

  • Perrot, K. & Rémila, E., (2017). Strong emergence of wave patterns on kadanoff sandpiles. The Electronic Journal of Combinatorics, 24(2), 5–12.

    Article  MathSciNet  Google Scholar 

  • Purho, P.,(2019). Noita: A Game Based On Falling Sand Simulation. Retrieved February, 10, 2020 from https://80.lv/articles/noita-a-game-based-on-falling-sand-simulation/

  • Re-Logic. (2011). Terraria.

  • Toffoli, T., & Margolus, N. (1987). Cellular Automata Machines: A New Environment For Modeling. Cambridge: The MIT Press.

    Book  Google Scholar 

  • Treglia, D. (2002). Game programming gems 3. Hingham, Mass.: Charles River Media.

    Google Scholar 

  • Volition. (2001). Red Faction.

  • von Neumann, J. (1966). Theory Of Self-Reproducing Automata. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Wolf-Gladrow, D., Dold, A., Takens, F., & Teissier, B. (2004). Lattice-gas cellular automata and lattice boltzmann models. Berlin, Heidelberg: Springer, Berlin / Heidelberg.

    Google Scholar 

  • Wolfram, S. (1984a). Cellular automata as models of complexity. Nature, 311(5985), 419–424.

    Article  Google Scholar 

  • Wolfram, S. (1984b). Universality and complexity in cellular automata. Physica D: Nonlinear Phenomena, 10(1–2), 1–35.

    Article  MathSciNet  Google Scholar 

  • Wolfram, S. (1985a). Origins of randomness in physical systems. Physical Review Letters, 55(5), 449–452.

    Article  MathSciNet  Google Scholar 

  • Wolfram, S. (1985b). Undecidability and intractability in theoretical physics. Physical Review Letters, 54(8), 735–738.

    Article  MathSciNet  Google Scholar 

  • Wolfram, S. (1986a). Cellular automata and complexity. Singapore: World Scientific Publishing.

    Google Scholar 

  • Wolfram, S. (1986b). Cellular automaton fluids 1: Basic theory. Journal of Statistical Physics, 45(3–4), 471–526.

    Article  MathSciNet  Google Scholar 

  • Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.

    MATH  Google Scholar 

  • Zhabotinskii, A. M. (1964). Periodicheski i khod okisleniia malonovo i kisloty v rastvore (Issledovanie kinetiki reaktsii Belousova) [Periodic course of the oxidation of malonic acid in a solution (studies on the kinetics of Beolusov’s reaction)]. Biofizika, 9, 306–311.

    Google Scholar 

Download references

Acknowledgements

This work was performed with the support of the School of Computing and Data Science at Wentworth Institute of Technology.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micah D. Schuster.

Ethics declarations

Availability of data and material

Upon request.

Conflicts of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devlin, J., Schuster, M.D. Probabilistic Cellular Automata for Granular Media in Video Games. Comput Game J 10, 111–120 (2021). https://doi.org/10.1007/s40869-020-00122-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40869-020-00122-4

Keywords

Navigation