Skip to main content
Log in

Cellular automaton fluids 1: Basic theory

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Continuum equations are derived for the large-scale behavior of a class of cellular automaton models for fluids. The cellular automata are discrete analogues of molecular dynamics, in which particles with discrete velocities populate the links of a fixed array of sites. Kinetic equations for microscopic particle distributions are constructed. Hydrodynamic equations are then derived using the Chapman-Enskog expansion. Slightly modified Navier-Stokes equations are obtained in two and three dimensions with certain lattices. Viscosities and other transport coefficients are calculated using the Boltzmann transport equation approximation. Some corrections to the equations of motion for cellular automaton fluids beyond the Navier-Stokes order are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wolfram, ed.,Theory and Applications of Cellular Automata (World Scientific, 1986).

  2. S. Wolfram, Cellular automata as models of complexity,Nature 311:419 (1984).

    Google Scholar 

  3. N. Packard and S. Wolfram, Two-dimensional cellular automata,J. Stat. Phys. 38:901 (1985).

    Google Scholar 

  4. D. J. Tritton,Physical Fluid Dynamics (Van Nostrand, 1977).

  5. W. W. Wood, Computer studies on fluid systems of hard-core particles, inFundamental Problems in Statistical Mechanics 3 E. D. G. Cohen, ed. (North-Holland, 1975).

  6. J. Hardy, Y. Pomeau, and O. de Pazzis, Time evolution of a two-dimensional model system. I. Invariant states and time correlation functions,J. Math. Phys. 14:1746 (1973); J. Hardy, O. de Pazzis, and Y. Pomeau, Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions,Phys. Rev. A 13:1949 (1976).

    Google Scholar 

  7. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice gas automata for the Navier-Stokes equation,Phys. Rev. Lett. 56:1505 (1986).

    Google Scholar 

  8. J. Salem and S. Wolfram, Thermodynamics and hydrodynamics with cellular automata, inTheory and Applications of Cellular Automata, S. Wolfram, ed. (World Scientific, 1986).

  9. D. d'Humieres, P. Lallemand, and T. Shimomura, An experimental study of lattice gas hydrodynamics, Los Alamos preprint LA-UR-85-4051; D. d'Humieres, Y. Pomeau, and P. Lallemand, Simulation d'allees de Von Karman bidimensionnelles a l'aide d'un gaz sur reseau,C. R. Acad. Sci. Paris II 301:1391 (1985).

  10. J. Broadwell, Shock structure in a simple discrete velocity gas,Phys. Fluids 7:1243 (1964).

    Google Scholar 

  11. H. Cabannes, The discrete Boltzmann equation, Lecture Notes, Berkeley (1980).

  12. R. Gatignol,Theorie cinetique des gaz a repartition discrete de vitesse (Springer, 1975).

  13. J. Hardy and Y. Pomeau, Thermodynamics and hydrodynamics for a modeled fluid,J. Math. Phys. 13:1042 (1972).

    Google Scholar 

  14. S. Harris,The Boltzmann Equation (Holt, Rinehart and Winston, 1971).

  15. R. Caflisch and G. Papanicolaou, The fluid-dynamical limit of a nonlinear model Boltzmann equation,Commun. Pure Appl. Math. 32:589 (1979).

    Google Scholar 

  16. B. Nemnich and S. Wolfram, Cellular automaton fluids 2: Basic phenomenology, in preparation.

  17. S. Wolfram,SMP Reference Manual (Inference Corporation, Los Angeles, 1983); S. Wolfram, Symbolic mathematical computation,Commun. ACM 28:390 (1985).

    Google Scholar 

  18. A. Sommerfeld,Thermodynamics and Statistical Mechanics (Academic Press, 1955).

  19. S. Wolfram, Origins of randomness in physical systems,Phys. Rev. Lett. 55:449 (1985).

    Google Scholar 

  20. S. Wolfram, Random sequence generation by cellular automata,Adv. Appl. Math. 7:123 (1986).

    Google Scholar 

  21. J. P. Boon and S. Yip,Molecular Hydrodynamics (McGraw-Hill, 1980).

  22. E. M. Lifshitz and L. P. Pitaevskii,Statistical Mechanics, Part 2 (Pergamon, 1980), Chapter 9.

  23. R. Liboff,The Theory of Kinetic Equations (Wiley, 1969).

  24. D. Levermore, Discretization effects in the macroscopic properties of cellular automaton fluids, in preparation.

  25. E. M. Lifshitz and L. P. Pitaevskii,Physical Kinetics (Pergamon, 1981).

  26. P. Resibois and M. De Leener,Classical Kinetic Theory of Fluids (Wiley, 1977).

  27. L. D. Landau and E. M. Lifshitz,Fluid Mechanics (Pergamon, 1959).

  28. M. H. Ernst, B. Cichocki, J. R. Dorfman, J. Sharma, and H. van Beijeren, Kinetic theory of nonlinear viscous flow in two and three dimensions,J. Stat. Phys. 18:237 (1978).

    Google Scholar 

  29. J. R. Dorfman, Kinetic and hydrodynamic theory of time correlation functions, inFundamental Problems in Statistical Mechanics 3, E. D. G. Cohen, ed. (North-Holland, 1975).

  30. R. Courant and K. O. Friedrichs,Supersonic Flows and Shock Waves (Interscience, 1948).

  31. D. Levermore, private communication.

  32. J. Milnor, private communication.

  33. V. Yakhot, B. Bayley, and S. Orszag, Analogy between hyperscale transport and cellular automaton fluid dynamics, Princeton University preprint (February 1986).

  34. H. S. M. Coxeter,Regular Polytopes (Macmillan, 1963).

  35. M. Hammermesh,Group Theory (Addison-Wesley, 1962), Chapter 9.

  36. L. D. Landau and E. M. Lifshitz,Quantum Mechanics (Pergamon, 1977), Chapter 12.

  37. H. Boerner,Representations of Groups (North-Holland, 1970), Chapter 7.

  38. L. D. Landau and E. M. Lifshitz,Theory of Elasticity (Pergamon, 1975), Section 10.

  39. D. Levineet al, Elasticity and dislocations in pentagonal and icosahedral quasicrystals,Phys. Rev. Lett. 14:1520 (1985).

    Google Scholar 

  40. L. D. Landau and E. M. Lifshitz,Statistical Physics (Pergamon, 1978), Chapter 13.

  41. B. K. Vainshtein,Modern Crystallography, (Springer, 1981), Chapter 2.

  42. J. H. Conway and N. J. A. Sloane, to be published.

  43. R. L. E. Schwarzenberger,N-Dimensional Crystallography (Pitman, 1980).

  44. J. Milnor, Hubert's problem 18: On crystallographic groups, fundamental domains, and on sphere packing,Proc. Symp. Pure Math. 28:491 (1976).

    Google Scholar 

  45. B. G. Wybourne,Classical Groups for Physicists (Wiley, 1974), p. 78; R. Slansky, Group theory for unified model building,Phys. Rep. 79:1 (1981).

    Google Scholar 

  46. B. Grunbaum and G. C. Shephard,Tilings and Patterns (Freeman, in press); D. Levine and P. Steinhardt, Quasicrystals I: Definition and structure, Univ. of Pennsylvania preprint.

  47. N. G. de Bruijn, Algebraic theory of Penrose's non-periodic tilings of the plane,Nedl. Akad. Wetensch. Indag. Math. 43:39 (1981); J. Socolar, P. Steinhardt, and D. Levine, Quasicrystals with arbitrary orientational symmetry,Phys. Rev. B 32:5547 (1985).

    Google Scholar 

  48. R. Penrose, Pentaplexity: A class of nonperiodic tilings of the plane,Math. Intelligencer 2:32 (1979).

    Google Scholar 

  49. J. P. Rivet and U. Frisch, Automates sur gaz de reseau dans l'approximation de Boltzmann,C. R. Acad. Sci. Paris II 302:267 (1986).

    Google Scholar 

  50. P. J. Davis,Circulant Matrices (Wiley, 1979).

  51. L. D. Landau and E. M. Lifshitz,Statistical Physics (Pergamon, 1978), Chapter 5.

  52. E. Kolb and S. Wolfram, Baryon number generation in the early universe,Nucl. Phys. B 172:224 (1980), Appendix A.

    Google Scholar 

  53. I. S. Gradshteyn and I. M. Ryzhik,Table of integrals, Series and Products (Academic Press, 1965).

  54. U. Frisch, private communication.

  55. P. Roache,Computational Fluid Mechanics (Hermosa, Albuquerque, 1976).

    Google Scholar 

  56. S. Omohundro and S. Wolfram, unpublished (July 1985).

  57. D. d'Humieres, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfram, S. Cellular automaton fluids 1: Basic theory. J Stat Phys 45, 471–526 (1986). https://doi.org/10.1007/BF01021083

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01021083

Key words

Navigation