Skip to main content
Log in

Extraction of Nickel from Magnesia–Nickel Silicate Ore

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

In this study, magnesia–nickel silicate ore was investigated, which contained 0.83% Ni and antigorite, chlorite, magnetite (Fe3O4), quartz, and mica as the main minerals. Chloride roasting and magnetic separation were used to treat the ore. The addition of red mud enhanced the transformation of nickel silicate to a strongly magnetic mineral mainly comprising metallic Ni and that of hematite to Fe3O4 and metallic Fe. Test results showed that a Ni concentrate with a Ni content of 11.41% and Ni recovery of 92.77% was achieved under the following optimal conditions: roasting temperature: 1373.15 K; roasting time: 120 min; CaCl2 dosage: 20%; coke dosage: 14%; red mud dosage: 30%; magnetic field intensity = 0.14 T; and grinding fineness: 90% < 0.05 mm. The major minerals in the Ni concentrate were Fe3O4, metallic Fe, and metallic Ni. Sc entered the magnetic separation tailings, creating a favorable condition for the further extraction of Sc by hydrometallurgy. The thermodynamic calculation results are in good agreement with the test results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kee-seok K, In-kook B, Hyung-Seok K (2016) A study on classification of limonite and saprolite from nickel laterite ores. J Korean Inst Resour Recycl 25:40–47. https://doi.org/10.7844/kirr.2016.25.1.40

    Article  Google Scholar 

  2. Butt CRM, Cluzel D (2013) Nickel laterite ore deposits: weathered serpentinites. Elements 9:123–128. https://doi.org/10.2113/gselements.9.2.123

    Article  CAS  Google Scholar 

  3. Tupaz CAJ, Watanabe Y, Sanematsu K, Echigo T (2020) Mineralogy and geochemistry of the Berong Ni-Co laterite deposit, Palawan, Philippines. J. Ore Geol Rev 125:103686. https://doi.org/10.1016/j.oregeorev.2020.103686

    Article  Google Scholar 

  4. Zhao D, Ma BZ, Shi BD, Zhou ZE, Xing P, Wang CY (2020) Mineralogical characterization of limonitic laterite from Africa and its proposed processing route. J Sustain Metall 6:491–503. https://doi.org/10.1007/s40831-020-00290-7

    Article  Google Scholar 

  5. Meshram P (2019) Abhilash, Pandey BD. Miner Process Extr Metall Rev 40:157–193. https://doi.org/10.1080/08827508.2018.1514300

    Article  CAS  Google Scholar 

  6. Xiao JH, Ding W, Peng Y, Chen T, Zou K, Wang Z (2020) Extraction of Nickel from Garnierite Laterite Ore Using Roasting and Magnetic Separation with Calcium Chloride and Iron Concentrate. Minerals 10:352. https://doi.org/10.3390/min10040352

    Article  CAS  Google Scholar 

  7. Zhu DQ, Cui Y, Hapugoda S, Vining K, Pan J (2012) Mineralogy and crystal chemistry of a low grade nickel laterite ore. Trans Nonferrous Met Soc China 22:907–916. https://doi.org/10.1016/S1003-6326(11)61264-8

    Article  CAS  Google Scholar 

  8. Sarbishei S, Tafaghodi Khajavi LT (2020) The effect of sulfur content of rotary kiln fuel on the composition of nickel laterite calcine. Fuel 280:118648. https://doi.org/10.1016/j.fuel.2020.118648

    Article  CAS  Google Scholar 

  9. Villanova-de-Benavent C, Domènech C, Tauler E, Galí S, Tassara S, Proenza JA (2017) Fe-Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations. Mineral Deposita 52:979–992. https://doi.org/10.1007/s00126-016-0683-7

    Article  CAS  Google Scholar 

  10. Zappala LC, Balucan RD, Vaughan J, Steel KM (2020) Development of a nickel extraction-mineral carbonation process: analysis of leaching mechanisms using regenerated acid. Hydrometallurgy 197:105482. https://doi.org/10.1016/j.hydromet.2020.105482

    Article  CAS  Google Scholar 

  11. Liu HY, Xiang N, Shen XY, Zhai YC, Han C (2020) Decrease of material burden in a novel alkali-saving reduction treatment process of nickel slag based on NaOH roasting. JOM 72:2686–2696. https://doi.org/10.1007/s11837-019-03914-w

    Article  CAS  Google Scholar 

  12. Tian HY, Pan J, Zhu DQ, Yang CC, Guo ZQ, Xue YX (2020) Improved beneficiation of nickel and iron from a low-grade saprolite laterite by addition of limonitic laterite ore and CaCO3. J Mater Res Technol 9:2578–2589. https://doi.org/10.1016/j.jmrt.2019.12.088

    Article  CAS  Google Scholar 

  13. Zhu DQ, Pan LT, Guo ZQ, Pan J, Zhang F (2019) Utilization of limonitic nickel laterite to produce ferronickel concentrate by the selective reduction-magnetic separation process. Adv Powder Technol 30:451–460. https://doi.org/10.1016/j.apt.2018.11.024

    Article  CAS  Google Scholar 

  14. Tsuji H (2012) Behavior of reduction and growth of metal in smelting of saprolite Ni-ore in a rotary kiln for production of ferro-nickel alloy. ISIJ Int 52:1000–1009. https://doi.org/10.2355/isijinternational.52.1000

    Article  CAS  Google Scholar 

  15. Cui FH, Mu WN, Zhai YC, Guo XY (2020) The selective chlorination of nickel and copper from low-grade nickel-copper sulfide–oxide ore: Mechanism and kinetics. Sep Purif Technol 239:116577. https://doi.org/10.1016/j.seppur.2020.116577

    Article  CAS  Google Scholar 

  16. Yang J, Zhang GQ, Ostrovski O, Jahanshahi S (2019) Selective reduction of an Australian garnieritic laterite ore. Miner Eng 131:79–89. https://doi.org/10.1016/j.mineng.2018.10.018

    Article  CAS  Google Scholar 

  17. Xiao JH, Zhang YS (2020) Extraction of cobalt and iron from refractory Co-bearing sulfur concentrate. Processes 8:200. https://doi.org/10.3390/pr8020200

    Article  CAS  Google Scholar 

  18. Li B, Ding ZG, Wei YG, Zhou SW, Wang H (2018) Reduction of nickel and iron from low-grade nickel laterite ore via a solid-state deoxidization method using methane. Mater Trans 59:1180–1185. https://doi.org/10.2320/matertrans.M2017351

    Article  CAS  Google Scholar 

  19. Ma BZ, Yang WJ, Xing P, Wang CY, Chen YQ, Lv DY (2017) Pilot-scale plant study on solid-state metalized reduction-magnetic separation for magnesium-rich nickel oxide ores. Int J Miner Process 169:99–105. https://doi.org/10.1016/j.minpro.2017.11.002

    Article  CAS  Google Scholar 

  20. Ribeiro PPM, Neumann R, dos Santos IDd, Rezende MC, Radino-Rouse P, Dutra AJB (2019) Nickel carriers in laterite ores and their influence on the mechanism of nickel extraction by sulfation-roasting-leaching process. Miner Eng 131:90–97. https://doi.org/10.1016/j.mineng.2018.10.022

    Article  CAS  Google Scholar 

  21. Adeela N, Khan U, Naz S, Khan K, Sagar RUR, Aslam S, Wu D (2018) Role of Ni concentration on structural and magnetic properties of inverse spinel ferrite. Mater Res Bull 107:60–65. https://doi.org/10.1016/j.materresbull.2018.06.032

    Article  CAS  Google Scholar 

  22. Kolmachikhina OB, Chunarev AA, Naboichenko SS (2015) Preparation of oxidized nickel ores for hydrometallurgical processing. Metallurgist 59:727–732. https://doi.org/10.1007/s11015-015-0166-6

    Article  CAS  Google Scholar 

  23. Ding W, Xiao JH, Peng Y, Shen SY, Chen T, Zou K, Wang Z (2020) A novel process for extraction of iron from a refractory red mud. Physicochem Probl Miner Process 56:125–136. https://doi.org/10.37190/ppmp/127319

    Article  Google Scholar 

  24. Hang GH, Xue ZL, Wang JH, Wu YJ (2020) Mechanism of calcium–sulphate on the aggregation and growth of ferronickel particles in the self-reduction of saprolitic nickel laterite ore. Metals 10:423. https://doi.org/10.3390/met10040423

    Article  CAS  Google Scholar 

  25. Archambo M, Kawatra SK (2020) Red mud: fundamentals and new avenues for utilization. Process Extr Metall Rev, Miner. https://doi.org/10.1080/08827508.2020.1781109

    Book  Google Scholar 

  26. Paramguru RK, Rath PC, Misra VN (2004) Trends in red mud utilization: a review. Miner Process Extr Metall Rev 26(1):1–29. https://doi.org/10.1080/08827500490477603

    Article  CAS  Google Scholar 

  27. Yu JW, Han YX, Li YJ, Gao P (2020) Recent advances in magnetization roasting of refractory iron ores: a technological review in the past decade. Miner Process Extr Metall Rev 41:349–359. https://doi.org/10.1080/08827508.2019.1634565

    Article  CAS  Google Scholar 

  28. Mishra S (2020) Review on reduction kinetics of iron ore–coal composite pellet in alternative and sustainable ironmaking. J Sustain Metall 6:541–556. https://doi.org/10.1007/s40831-020-00299-y

    Article  Google Scholar 

  29. Chen D, Zhu DQ, Hong L, Chen Y, Xu JF, Wu L (2015) Preparation of pre-reduced pellet using pyrite cinder containing nonferrous metals with high temperature chloridizing reduction roasting technology: effect of CaCl2 additive. J Cent South Univ 22:4154–4161. https://doi.org/10.1007/s11771-015-2962-3

    Article  CAS  Google Scholar 

  30. Matus C, Stopic S, Etzold S, Kremer D, Wotruba H, Dertmann C, Telle R, Friedrich B, Knops P (2020) Mechanism of nickel, magnesium, and iron recovery from olivine bearing ore during leaching with hydrochloric acid including a carbonation pre-treatment. Metals 10:811. https://doi.org/10.3390/met10060811

    Article  CAS  Google Scholar 

  31. Li S, Kang Z, Liu W, Lian YC, Yang HS (2021) Reduction behavior and direct reduction kinetics of red mud-biomass composite pellets. J Sustain Metall 7:126–135. https://doi.org/10.1007/s40831-020-00326-y

    Article  Google Scholar 

  32. Pintowantoro S, Widyartha AB, Setiyorini Y, Setiyorini Y, Abdul F (2021) Sodium thiosulfate and natural sulfur: novel potential additives for selective reduction of limonitic laterite ore. J Sustain Metall. https://doi.org/10.1007/s40831-021-00352-4

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Research Fund Program of Innovation Center of Rare Earth Resources Development and Utilization, China Geological Survey (Grant No. 2021XTZX01), the Sichuan Science and Technology Program (Grant Nos. 2021YJ0057, 2021YFG0268, 2019FS0451, and 2019FS0452), Key Laboratory of Guangdong Provincial Key Laboratory of Radioactive and Rare Resource Utilization (Grant No. 2018B030322009), and the Research Fund Program of Key Laboratory of Sichuan Province for Comprehensive Utilization of Vanadium and Titanium Resources Foundation (Grant No. 2018FTSZ35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhui Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Adam Clayton Powell.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Xiong, W., Zou, K. et al. Extraction of Nickel from Magnesia–Nickel Silicate Ore. J. Sustain. Metall. 7, 642–652 (2021). https://doi.org/10.1007/s40831-021-00364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00364-0

Keywords

Navigation