Skip to main content
Log in

Fe–Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Fe–Ni-bearing serpentine from the saprolite horizon is the main Ni ores in hydrous silicate-type Ni laterites and formed by chemical weathering of partially serpentinized ultramafic rocks under tropical conditions. During lateritization, Mg, Si, and Ni are leached from the surface and transported downwards. Fe2+ is oxidized to Fe3+ and fixed as insoluble Fe-oxyhydroxides (mostly goethite) that incorporate Ni. This Ni is later leached from goethite and incorporated in secondary serpentine and garnierite. As a result, a serpentine-dominated saprolite horizon forms over the ultramafic protolith, overlapped by a Fe-oxyhydroxide-dominated limonite horizon. The serpentine from the protolith (serpentine I) is of hydrothermal origin and yields similar Ni (0.10–0.62 wt.% NiO) and lower Fe (mostly 1.37–5.81 wt.% FeO) concentrations than the primary olivine. In contrast, Fe–Ni-bearing serpentine from the saprolite (serpentine II) shows significantly higher and variable Fe and Ni contents, typically ranging from 2.23 to 15.59 wt.% Fe2O3 and from 1.30 to 7.67 wt.% NiO, suggesting that serpentine get enriched in Fe and Ni under supergene conditions. This study presents detailed mineralogical, textural, and chemical data on this serpentine II, as well as new insights by thermodynamic calculations assuming ideal solution between Fe-, Ni- and Mg-pure serpentines. The aim is to assess if at atmospheric pressure and temperature Fe–Ni-bearing serpentine can be formed by precipitation. Results indicate that the formation of serpentine II under atmospheric pressure and temperature is thermodynamically supported, and pH, Eh, and the equilibrium constant of the reaction are the parameters that affect the results more significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aiglsperger T, Proenza JA, Lewis JF, Labrador M, Svojtka M, Rojas-Purón A, Longo F, Ďurišová J (2016) Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol Rev 73:127–147

    Article  Google Scholar 

  • Blanc P, Lassin A, Piantone P, Azaroual M, Jacquemet N, Fabbri A, Gaucher EC (2012) Thermoddem: a geochemical database focused on low temperature water/rock interactions and waste materials. Appl Geochem 27:2107–2116

    Article  Google Scholar 

  • Blanc P, Vieillard P, Gailhanou H, Gaboreau S, Gaucher E, Fialips CI, Madé B, Giffaut E (2015) A generalized model for predicting the thermodynamic properties of clay minerals. Am J Sci 315:734–780

    Article  Google Scholar 

  • Boschetti T, Toscani L (2008) Springs and streams of the Taro–Ceno valleys (northern Apennine, Italy): reaction path modeling of waters interacting with serpentinized ultramafic rocks. Chem Geol 257:76–91

    Article  Google Scholar 

  • Brand NW, Butt CRM, Elias M (1998) Nickel laterites: classification and features. AGSO J Australian Geol Geoph 17:81–88

    Google Scholar 

  • Cathelineau M, Quesnel B, Gautier P, Boulvais P, Couteau C, Drouillet M (2015) Nickel dispersion and enrichment at the bottom of the regolith: formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia. Mineral Deposita:1–12. doi:10.1007/s00126-015-0607-y

  • Chen, TT, Dutrizac, JE, Krause, E, Osborne, R (2004) Mineralogical characterization of nickel laterites from New Caledonia and Indonesia. Int Laterite Nickel Symposium, pp. 79–99)

  • Chermak JA, Rimstidt JD (1989) Estimating the thermodynamic properties (ΔG0 f and ΔH0 f) of silicate minerals at 298 K from the sum of polyhedral contributions. Am Mineral 74:1023–1031

    Google Scholar 

  • Dalvi, AD, Gordon Bacon, W, Osborne, RC (2004) The past and the future of nickel laterites. Prospectors and Developers Association of Canada (PDAC) International Convention, Trade Show & Investors Exchange, Toronto, Canada, 7-10 March pp 1-27

  • Evans BW (2004) The serpentinite multisystem revisited:chrysotile is metastable. Int Geol Rev 46:479–506. doi:10.2747/0020-6814.46.6.479

    Article  Google Scholar 

  • Evans BW (2008) Control of the Products of Serpentinization by the Fe2+Mg 1 Exchange Potential of Olivine and Orthopyroxene. Journal of Petrology 49:1873–1887

  • Evans BW, Kuehner SM, Chopelas A (2009) Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, NE Oregon. Am Mineral 94:1731–1734

    Article  Google Scholar 

  • Freyssinet, Ph, Butt, CRM, Morris, RC (2005) Ore-forming processes related to lateritic weathering: Econ Geol 100th Anniv Vol:681–722

  • Galí S, Soler JM, Proenza JA, Lewis JF, Cama J, Tauler E (2012) Ni-enrichment and stability of Al-free garnierite solid-solutions: a thermodynamic approach. Clay Clay Miner 60:121–135

    Article  Google Scholar 

  • Gallardo T, Tauler E, Proenza JA, Lewis JF, Galí S, Labrador M, Longo F, Bloise G (2010) Geology, mineralogy and geochemistry of the Loma Ortega Ni laterite deposit, Dominican Republic. Macla 13:89–90

    Google Scholar 

  • Giffaut E, Grivé M, Blanc P, Vieillard P, Colàs E, Gailhanou H, Gaboreau S, Marty N, Madé B, Duro L (2014) Andra thermodynamic database for performance assessment: ThermoChimie. Appl Geochem 49:225–236

    Article  Google Scholar 

  • Gleeson SA, Butt CR, Elias M (2003) Nickel laterites: a review: SEG. Newsletter 54:11–18

    Google Scholar 

  • Golightly, JP (1981) Nickeliferous laterite deposits. Econ Geol 75th Anniv Vol: 710–735.

  • Golightly JP (2010) Progress in understading the evolution of nickel laterites. Econ Geol Spec Pub 15:451–485

    Google Scholar 

  • Golightly JP, Arancibia ON (1979) The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine form a nickeliferous laterite profile, Soroako, Indonesia. Can Mineral 17:719–728

    Google Scholar 

  • Haldemann E, Buchan R, Blowes J, Chandler T (1979) Geology of lateritic nickel deposits, Dominican Republic. International Laterite Symposium 4:57–84

    Google Scholar 

  • Klein F, Bach W, Jons N, McCollom T, Moskowitz B, Berquo T (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15 degrees N on the mid-Atlantic ridge. Geochim Cosmochim Acta 73:6868–6893

    Article  Google Scholar 

  • Kuck, PH (2013) Nickel. USGS Mineral Commodity Summaries 108–109

  • Kuck PH (2015) Nickel. United States Geological Survey Mineral Commodity Summaries 108–109

  • Landauro Sotelo, EL (2008) Evaluación del riesgo ambiental por lixiviado de metales en residuos mineros y suelos empleando cuatro métodos de extracción secuencial. Master Thesis, Universitat de Girona and Universidad Politécnica de Madrid

  • Lewis J, Jimenez J (1991) Duarte complex in the La Vega-Jarabacoa-Janico Area, Central Hispaniola: geological and geochemical features of the sea floor during the early stages of the arc evolution. In Geologic and Tectonic development of the North America-Caribbean Plate Boundary in Hispaniola (Mann, P., Draper, G., Lewis, J.F.). Geological Society of America, Special Paper 262, 115–142.

  • Lewis JF, Draper G, Proenza JA, Espaillat J, Jimenez J (2006) Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: a review of their occurrence, composition origin, emplacement and Ni-laterite soils formation. Geol Acta 4:237–263

    Google Scholar 

  • Lithgow, E (1993) Nickel laterites of central Dominican Republic Part I. Mineralogy and ore dressing. In: Reddy, R.G., Weizenbach, R.N. (Eds.), The Paul E. Queneau Int. Symposium, Extractive Metallurgy of Copper, Nickel and cobalt, Volume I: Fundamental aspects. The Minerals, Metals and Materials Society, Portland, 403–42.

  • Luce, RW (1971) Identification of serpentine varieties by infra-red absorption: USGS Prof. Paper 750B, 199–201

  • Marchesi, C, Garrido, CJ, Godard, M, Proenza, JA, Gervilla, F, Blanco-Moreno, J (2006) Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petrol 151:717–736.

  • Marchesi, C, Garrido, C, Proenza, J, Konc, Z, Hidas, K, Lewis, J (2012). Mineral and whole rock compositions of peridotites from Loma Caribe (Dominican Republic): insights into the evolution of the oceanic mantle in the Caribbean region. Geophysical Research, Abstract 14 of EGU general assembly, 2012. Vienna, Austria, 22–27

  • Mondesir H, Decarreau A (1987) Synthesis between 25 °C and 200 °C of Ni-Mg lizardites—experimental partition of Ni and Mg between lizardites and water. B Mineral 110:409–426

    Google Scholar 

  • Mudd GM (2010) Global trends and environmental issues in nickel mining: sulfides versus laterites. Ore Geol Rev 38:9–26

    Article  Google Scholar 

  • Mudd GM, Jowitt SM (2014) A detailed assessment of global nickel resource trends and endowments. Econ Geol 109:1813–1841

    Article  Google Scholar 

  • Nelson CE, Proenza JA, Lewis JF, López-Kramer J (2011) The metallogenic evolution of the greater Antilles. Geol Acta 9:229–264

    Google Scholar 

  • Normando, M.L. (2006). Caracterización Mineralógica del Perfil Saprolítico del Depósito de Lateritas Niquelíferas Yamanigüey. PhD Thesis, Universidad de Barcelona.

  • Nriagu JO (1975) Thermochemical approximation for clay minerals. Am Mineral 60:834–839

    Google Scholar 

  • Orberger B, Friedrich G, Woermann (1990) The distribution of halogens and carbon in PGE-bearing ultramafics of the Acoje ophiolite block, Zambales, Philippines. J Geochem Expl 37:147–169

    Article  Google Scholar 

  • Parkhurst, DL, Appelo, CAJ (2012) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. USGS Techniques and Methods, book 6, chap. A43, 497 p., available only at http://pubs.usgs.gov/tm/06 A43/

  • Pelletier, B (1996) Serpentines in nickel silicate ore from New Caledonia. Australasian Institute of Mining and Metallurgy Publication Series – Nickel Conference, Kalgoorlie (Western Australia) 6/96:197–205

  • Proenza JA, Gervilla F, Melgarejo JC (1999) Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (Eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle. Economic Geology 94:547–566

  • Proenza JA, Tauler E, Melgarejo JC, Galí S, Labrador M, Marrero N, Pérez-Melo N, Rojas-Purón AL, Blanco-Moreno JA (2007) Mineralogy of oxide and hydrous silicate Ni-laterite profiles in Moa Bay area, northeast Cuba. In: Andrew et al. (eds.), Digging Deeper, Irish Association for Economic Geology, Dublin, Ireland. 2: 1389–1392

  • Puigdomènech, I (2010) MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms) Windows interface to the MS-DOS versions of INPUT, SED and PREDOM (FORTRAN programs drawing chemical equilibrium diagrams) version 6 Dec 2010. Royal Institute of Technology, Stockholm, Sweden

  • Robie, RA, Hemingway, BS (1995) Thermodynamic properties of minerals and Related Substances at 298.15 K and 1 bar (105) Pascals) pressure and higher temperatures: U.S. Geological Survey Bulletin, v. 2131, 461 p.

  • Roqué-Rosell, J, Mosselmans, JFW, Proenza, JA, Labrador, M, Galí, S, Atkinson, KD, Quinn, PD (2010) Sorption of Ni by "lithiophorite-asbolane" intermediates in Moa Bay lateritic deposits, eastern Cuba. Chem Geol 275:9–18.

  • Roqué-Rosell, J, Villanova-de-Benavent, C, Proenza, JA (2016) The accumulation of Ni in garnierites and serpentines from Falcondo Ni-laterite deposit (Dominican Republic) elucidated by means of μXAS. Geochim Cosmochim Acta (in press)

  • Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. PNAS 101(35):12818–12823

    Article  Google Scholar 

  • Streit E, Kelemen P, Eiler J (2012) Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Smail ophiolite, Oman. Contrib Mineral Petr 164:821–837

    Article  Google Scholar 

  • Tauler E, Buen H, Proenza JA, Galí S, Melgarejo JC, Labrador M, Marrero N (2007) Tres generaciones de serpentina en el perfil laterítico del NE de Cuba. Macla 7:110

    Google Scholar 

  • Tauler E, Proenza J, Galí S, Lewis J, Labrador M, García-Romero E (2009) Ni-sepiolite-falcondoite in garnierite mineralisation from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Miner 44:435–454

    Article  Google Scholar 

  • Trescases, JJ (1973) L’évolution géochimique supergène des roches ultrabasiques en zone tropicale et la formation des gisements nickélifères de Nouvelle-Calédonie. PhD thesis, Université Louis Pasteur, Strasbourg.

  • Trescases JJ (1979) Remplacement progressif des silicates par les hydroxides de fer et de nickel dans les profils d’altération tropicale des roches ultrabasiques. Accumulation résiduelle et épigenie. Sci Géol Bull 32:181–188

    Google Scholar 

  • Vieillard P (1994a) Prediction of enthalpy of formation based on refined crystal structures of multisite compounds: part 1. Theories and examples. Geochim Cosmochim Acta 58:4049–4063. doi:10.1016/0016-7037(94)90266-6

    Article  Google Scholar 

  • Vieillard P (1994b) Prediction of enthalpy of formation based on refined crystal structures of multisite compounds: part 2. Application to minerals belonging to the system Li2O-Na2O-K2O-BeO-MgO-CaO-MnO-FeO-Fe2O3-Al2O3-SiO2-H2O. Results and discussion. Geochim Cosmochim Acta 58:4065–4107. doi:10.1016/0016-7037(94)90267-4

    Article  Google Scholar 

  • Vieillard P (2000) A new method for the prediction of Gibbs free energies of formation of hydrated clay minerals based on the electronegativity scale. Clay Clay Miner 48:459–473

    Article  Google Scholar 

  • Vieillard P (2002) A new method for the prediction of Gibbs free energies of formation of phyllosilicates (10 A and 14 A) based on the electronegativity scale. Clay Clay Miner 50:352–363

    Article  Google Scholar 

  • Villanova-de-Benavent C, Proenza JA, Galí S, García-Casco A, Tauler E, Lewis JF, Longo F (2014) Garnierites and garnierites: textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geol Rev 58:91–109

    Article  Google Scholar 

  • Wells MA, Ramanaidou ER, Verrall M, Tessarolo C (2009) Mineralogy and crystal chemistry of garnierites in the Goro lateritic nickel deposit, New Caledonia. Eur J Mineral 21:467–483

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Wicks FJ, Plant AG (1979) Electron microprobe and X-ray microbeam studies of serpentine textures. Can Mineral 17:785–830

    Google Scholar 

  • Wilson J, Savage D, Cuadros J, Shibata M, Ragnasdottir KV (2006) The effect of iron on montmorillonite stability. (I) background and thermodynamic considerations. Geochim Cosmochim Acta 70:306–322

    Article  Google Scholar 

Download references

Acknowledgments

This research has been financially supported by FEDER Funds, the Spanish projects CGL2009-10924 and CGL2012-36263, and Catalan project 2014-SGR-1661 and a PhD grant to Cristina Villanova-de-Benavent sponsored by the Ministerio de Educación (Spain). The help and hospitality extended by the staff at Falcondo Xstrata mine are also gratefully acknowledged. The authors also thank Dr. Thomas Aiglsperger for the comments on the paper prior to submission and Prof. J.P. Golightly, Editor-in-Chief Georges Beaudoin, Associate Editor Beate Orberger and two anonymous reviewers for their accurate revisions and constructive suggestions that highly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Villanova-de-Benavent.

Ethics declarations

Conflict of interest

The authors declare that they have not conflict of interest.

Additional information

Editorial handling: B. Orberger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villanova-de-Benavent, C., Domènech, C., Tauler, E. et al. Fe–Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations. Miner Deposita 52, 979–992 (2017). https://doi.org/10.1007/s00126-016-0683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-016-0683-7

Keywords

Navigation