Skip to main content

Advertisement

Log in

Neuroendocrine neoplasms in the context of inherited tumor syndromes: a reappraisal focused on targeted therapies

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

A Correction to this article was published on 07 October 2022

This article has been updated

Abstract

Purpose

Neuroendocrine neoplasms can occur as part of inherited disorders, usually in the form of well-differentiated, slow-growing tumors (NET). The main predisposing syndromes include: multiple endocrine neoplasias type 1 (MEN1), associated with a large spectrum of gastroenteropancreatic and thoracic NETs, and type 4 (MEN4), associated with a wide tumour spectrum similar to that of MEN1; von Hippel-Lindau syndrome (VHL), tuberous sclerosis (TSC), and neurofibromatosis 1 (NF-1), associated with pancreatic NETs. In the present review, we propose a reappraisal of the genetic basis and clinical features of gastroenteropancreatic and thoracic NETs in the setting of inherited syndromes with a special focus on molecularly targeted therapies for these lesions.

Methods

Literature search was systematically performed through online databases, including MEDLINE (via PubMed), and Scopus using multiple keywords’ combinations up to June 2022.

Results

Somatostatin analogues (SSAs) remain the mainstay of systemic treatment for NETs, and radiolabelled SSAs can be used for peptide-receptor radionuclide therapy for somatostatin receptor (SSTR)-positive NETs. Apart of these SSTR-targeted therapies, other targeted agents have been approved for NETs: the mTOR inhibitor everolimus for lung, gastroenteropatic and unknown origin NET, and sunitinib, an antiangiogenic tyrosine kinase inhibitor, for pancreatic NET. Novel targeted therapies with other antiangiogenic agents and immunotherapies have been also under evaluation.

Conclusions

Major advances in the understanding of genetic and epigenetic mechanisms of NET development in the context of inherited endocrine disorders have led to the recognition of molecular targetable alterations, providing a rationale for the implementation of treatments and development of novel targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Faggiano A, Ferolla P, Grimaldi F, Campana D, Manzoni M, Davì MV et al (2008) Natural history of gastro-entero-pancreatic and thoracic neuroendocrine tumors. Data froma large prospective and retrospective Italian Epidemiological study: the net management study. J Endocrinol Invest 35:817–823

    Google Scholar 

  2. Ferolla P, Faggiano A, Mansueto G, Avenia N, Cantelmi MG, Giovenali P et al (2008) The biological characterization of neuroendocrine tumors: the role of neuroendocrine markers. J Endocrinol Invest 31:277–286

    Article  CAS  Google Scholar 

  3. Feola T, Centello R, Sesti F, Puliani G, Verrico M, Di Vito V, Di Gioia C, Bagni O, Lenzi A, Isidori AM, Giannetta E, Faggiano A (2021) Neuroendocrine carcinomas with atypical proliferation index and clinical behavior: a systematic review. Cancers 13:1247. https://doi.org/10.3390/cancers13061247

    Article  Google Scholar 

  4. Lloyd RV, Osamura R, Kloppel G, Rosai J (2017) WHO classification of tumours of endocrine organs, 4th edn. IARC Press, Lyon

    Google Scholar 

  5. Modica R, Scandurra C, Maldonato NM, Dolce P, Dipietrangelo GG, Centello R, Di Vito V, Giannetta E, Isidori AM, Lenzi A, Faggiano A, Colao A (2022) Health-related quality of life in patients with neuroendocrine neoplasms: a two-wave longitudinal study. J Endocrinol Invest 22:1–8. https://doi.org/10.1007/s40618-022-01872-w

    Article  Google Scholar 

  6. Scandurra C, Modica R, Maldonato NM, Dolce P, Dipietrangelo GG, Centello R, di Vito V, Bottiglieri F, de Cicco F, Giannetta E, Isidori AM, Lenzi A, Muzii B, Faggiano A, Colao A (2021) Quality of life in patients with neuroendocrine neoplasms: the role of severity, clinical heterogeneity, and resilience. J Clin Endocrinol Metab 106:e316–e327. https://doi.org/10.1210/clinem/dgaa7602021;106(1)

    Article  Google Scholar 

  7. Zamponi V, La Salvia A, Tarsitano MG, Mikovic N, Rinzivillo M, Panzuto F, Giannetta E, Faggiano A, Mazzilli R (2022) Effect of neuroendocrine neoplasm treatment on human reproductive health and sexual function. J Clin Med 11:3983. https://doi.org/10.3390/jcm11143983

    Article  CAS  Google Scholar 

  8. Couvelard A, Scoazec JY (2020) Inherited tumor syndromes of gastroenteropancreatic and thoracic neuroendocrine neoplasms. Ann Pathol 40:120–133. https://doi.org/10.1016/j.annpat.2020.01.002

    Article  Google Scholar 

  9. Ishida H, Lam AK (2022) Pancreatic neuroendocrine neoplasms: updates on genomic changes in inherited tumour syndromes and sporadic tumours based on WHO classification. Crit Rev Oncol Hematol 172:103648. https://doi.org/10.1016/j.critrevonc.2022.103648

    Article  Google Scholar 

  10. La Salvia A, Espinosa-Olarte P, Riesco-Martinez MDC, Anton-Pascual B, Garcia-Carbonero R (2021) Targeted cancer therapy: what’s new in the field of neuroendocrine neoplasms? Cancers (Basel) 13:1701. https://doi.org/10.3390/cancers13071701

    Article  CAS  Google Scholar 

  11. Rinke A, Müller HH, Schade-Brittinger C, Klose KJ, Barth P, Wied M, Mayer C, Aminossadati B, Pape UF, Bläker M, Harder J, Arnold C, Gress T, Arnold R, PROMID Study Group (2009) Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 27:4656–4563. https://doi.org/10.1200/JCO.2009.22.8510

    Article  CAS  Google Scholar 

  12. Albertelli M, Nazzari E, Sciallero S, Grillo F, Morbelli S, De Cian F, Cittadini G, Ambrosetti E, Ciarmiello A, Ferone D, IRCCS Policlinico San Martino, University of Genova Neuroendocrine Tumor Board (2017) Anti-tumoral effects of somatostatin analogs: a lesson from the CLARINET study. J Endocrinol Invest 40:1265–1269. https://doi.org/10.1007/s40618-017-0692-0

    Article  CAS  Google Scholar 

  13. Hicks RJ, Kwekkeboom DJ, Krenning E, Bodei L, Grozinsky-Glasberg S, Arnold R et al (2017) ENETS consensus guidelines for the standards of care in neuroendocrine neoplasia: peptide receptor radionuclide therapy with radiolabeled somatostatin analogues. Neuroendocrinology 105:295–309. https://doi.org/10.1159/000475526

    Article  CAS  Google Scholar 

  14. Raymond E, Dahan L, Raoul JL, Bang YJ, Borbath I, Lombard-Bohas C et al (2011) Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med 364:501–513. https://doi.org/10.1056/NEJMoa1003825 (Erratum in: N Engl J Med 364:1082)

    Article  CAS  Google Scholar 

  15. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E et al (2011) Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med 364:514–523. https://doi.org/10.1056/NEJMoa1009290

    Article  CAS  Google Scholar 

  16. Yao JC, Fazio N, Singh S, Buzzoni R, Carnaghi C, Wolin E et al (2016) Everolimus for the treatment of advanced, nonfunctional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study HHS Public Access. Lancet 387:968–977

    Article  CAS  Google Scholar 

  17. Thakker RV (2010) Multiple endocrine neoplasia type 1 (MEN1). Best Pract Res Clin Endocrinol Metab 24:355–370. https://doi.org/10.1016/j.beem.2010.07.003

    Article  CAS  Google Scholar 

  18. Romei C, Pardi E, Cetani F, Elisei R (2012) Genetic and clinical features of multiple endocrine neoplasia types 1 and 2. J Oncol. https://doi.org/10.1155/2012/705036

    Article  Google Scholar 

  19. Thakker RV, Newey PJ, Walls GV, Bilezikian J, Dralle H, Ebeling PR, Melmed S, Sakurai A, Tonelli F, Brandi ML, Endocrine Society (2012) Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J Clin Endocrinol Metab 97:2990–3011. https://doi.org/10.1210/jc.2012-1230

    Article  CAS  Google Scholar 

  20. Goudet P, Dalac A, Le Bras M, Cardot-Bauters C, Niccoli P, Lévy-Bohbot N et al (2015) MEN1 disease occurring before 21 years old: a 160-patient cohort study from the Groupe d’étude des Tumeurs Endocrines. J Clin Endocrinol Metab 100:1568–1577. https://doi.org/10.1210/jc.2014-3659

    Article  CAS  Google Scholar 

  21. Giusti F, Cianferotti L, Boaretto F, Cetani F, Cioppi F, Colao A et al (2017) Multiple endocrine neoplasia syndrome type 1: institution, management, and data analysis of a nationwide multicenter patient database. Endocrine 58:349–359. https://doi.org/10.1007/s12020-017-1234-4

    Article  CAS  Google Scholar 

  22. Dreijerink KM, Goudet P, Burgess JR, Valk GD, International Breast Cancer in MEN1 Study Group (2014) Breast-cancer predisposition in multiple endocrine neoplasia type 1. N Engl J Med 371:583–584. https://doi.org/10.1056/NEJMc1406028

    Article  Google Scholar 

  23. Perrier ND, Arnold A, Costa-Guda J, Busaidy NL, Nguyen H, Chuang HH, Brandi ML (2020) Hereditary endocrine tumours: current state-of-the-art and research opportunities: new and future perspectives for parathyroid carcinoma. Endocr Relat Cancer 27:T53–T63. https://doi.org/10.1530/ERC-20-0018

    Article  Google Scholar 

  24. Romanet P, Mohamed A, Giraud S, Odou MF, North MO, Pertuit M, Pasmant E, Coppin L, Guien C, Calender A, Borson-Chazot F, Béroud C, Goudet P, Barlier A (2019) UMD-MEN1 database: an overview of the 370 MEN1 variants present in 1676 patients from the French population. J Clin Endocrinol Metab 104:753–764. https://doi.org/10.1210/jc.2018-01170

    Article  Google Scholar 

  25. Larsson C, Skogseid B, Öberg K, Nakamura Y, Nordenskjöld M (1988) Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 332:85–87. https://doi.org/10.1038/332085a0

    Article  CAS  Google Scholar 

  26. Thakker RV, Bouloux P, Wooding C, Chotai K, Broad PM, Spurr NK, Besser GM, O’Riordan JL (1989) Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. N Engl J Med 321:218–224. https://doi.org/10.1056/NEJM198907273210403

    Article  CAS  Google Scholar 

  27. Bassett JH, Forbes SA, Pannett AA, Lloyd SE, Christie PT, Wooding C, Harding B, Besser GM, Edwards CR, Monson JP, Sampson J, Wass JA, Wheeler MH, Thakker RV (1998) Characterization of mutations in patients with multiple endocrine neoplasia type 1. Am J Hum Genet 62:232–244. https://doi.org/10.1086/301729

    Article  CAS  Google Scholar 

  28. Lemos MC, Thakker RV (2008) Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 29:22–32. https://doi.org/10.1002/humu.20605

    Article  CAS  Google Scholar 

  29. Machens A, Schaaf L, Karges W, Frank-Raue K, Bartsch DK, Rothmund M, Schneyer U, Goretzki P, Raue F, Dralle H (2007) Age-related penetrance of endocrine tumours in multiple endocrine neoplasia type 1 (MEN1): a multicentre study of 258 gene carriers. Clin Endocrinol (Oxf) 67:613–622. https://doi.org/10.1111/j.1365-2265.2007.02934.x

    Article  Google Scholar 

  30. Goudet P, Murat A, Cardot-Bauters C, Emy P, Baudin E, du Boullay CH et al (2009) Thymic neuroendocrine tumors in multiple endocrine neoplasia type 1: a comparative study on 21 cases among a series of 761 MEN1 from the GTE (Groupe des Tumeurs Endocrines). World J Surg 33:1197–1207. https://doi.org/10.1007/s00268-009-9980-y

    Article  Google Scholar 

  31. Christakis I, Qiu W, Hyde SM, Cote GJ, Grubbs EG, Perrier ND, Lee JE (2018) Genotype-phenotype pancreatic neuroendocrine tumor relationship in multiple endocrine neoplasia type 1 patients: a 23-year experience at a single institution. Surgery 163:212–217. https://doi.org/10.1016/j.surg.2017.04.044

    Article  Google Scholar 

  32. Jensen RT (2018) Neuroendocrine tumors of the gastrointestinal tract and pancreas. In: Jameson J, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J (eds) Harrison’s principles of internal medicine, 20th edn. McGraw Hill

    Google Scholar 

  33. Giannetta E, Sesti F, Modica R, Grossrubatscher EM, Guarnotta V, Ragni A, Zanata I, Colao A, Faggiano A (2021) Case report: unmasking hypercalcemia in patients with neuroendocrine neoplasms experience from six Italian Referral Centers. Front Endocrinol (Lausanne) 12:665698. https://doi.org/10.3389/fendo.2021.665698

    Article  Google Scholar 

  34. Fanciulli G, Ruggeri RM, Grossrubatscher E, Calzo FL, Wood TD, Faggiano A, Isidori A, Colao A, NIKE (2020) Serotonin pathway in carcinoid syndrome: clinical, diagnostic, prognostic and therapeutic implications. Rev Endocr Metab Disord 21:599–612. https://doi.org/10.1007/s11154-020-09547-8

    Article  CAS  Google Scholar 

  35. Sesti F, Feola T, Puliani G, Centello R, Di Vito V, Bagni O, Lenzi A, Isidori AM, Cantisani V, Faggiano A, Giannetta E (2021) Sunitinib treatment for advanced paraganglioma: case report of a novel SDHD gene mutation variant and systematic review of the literature. Front Oncol 11:677983. https://doi.org/10.3389/fonc.2021.6779832021

    Article  Google Scholar 

  36. Iglesias P, Díez JJ (2014) Management of endocrine disease: a clinical update on tumor-induced hypoglycemia. Eur J Endocrinol 170(4):R147–R157. https://doi.org/10.1530/EJE-13-1012014

    Article  CAS  Google Scholar 

  37. Åkerström G, Hellman P (2007) Surgery on neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab 21:87–109. https://doi.org/10.1016/j.beem.2006.12.004

    Article  Google Scholar 

  38. Yates CJ, Newey PJ, Thakker RV (2015) Challenges and controversies in management of pancreatic neuroendocrine tumours in patients with MEN1. Lancet Diabetes Endocrinol 3:895–905. https://doi.org/10.1016/S2213-8587(15)00043-1

    Article  Google Scholar 

  39. Oleinikov K, Uri I, Jacob H, Epshtein J, Benson A, Ben-Haim S et al (2020) Long-term outcomes in MEN-1 patients with pancreatic neuroendocrine neoplasms: an Israeli specialist center experience. Endocrine 68:222–229. https://doi.org/10.1007/s12020-020-02217-4

    Article  CAS  Google Scholar 

  40. Lee L, Ito T (2019) Jensen RT (2019) Prognostic and predictive factors on overall survival and surgical outcomes in pancreatic neuroendocrine tumors: recent advances and controversies. Expert Rev Anticancer Ther 19:1029–1050. https://doi.org/10.1080/14737140.2019.1693893

    Article  CAS  Google Scholar 

  41. Grozinsky-Glasberg S, Shimon I, Korbonits M, Grossman AB (2008) Somatostatin analogues in the control of neuroendocrine tumours: efficacy and mechanisms. Endocr Relat Cancer 15:701–720. https://doi.org/10.1677/ERC-07-0288

    Article  CAS  Google Scholar 

  42. La Salvia A, Sesti F, Grinzato C, Mazzilli R, Tarsitano MG, Giannetta E, Faggiano A (2021) Somatostatin analogue therapy in MEN1-related pancreatic neuroendocrine tumors from evidence to clinical practice: a systematic review. Pharmaceuticals (Basel) 14(1039):2021. https://doi.org/10.3390/ph14101039

    Article  CAS  Google Scholar 

  43. Ramundo V, Del Prete M, Marotta V, Marciello F, Camera L, Napolitano V, De Luca L, Circelli L, Colantuoni V, Di Sarno A, Carratù AC, de Luca-di-Roseto C, Colao A, Faggiano A, Multidisciplinary Group for Neuroendocrine Tumors of Naples (2014) Impact of long-acting octreotide in patients with early-stage MEN1-related duodeno-pancreatic neuroendocrine tumours. Clin Endocrinol (Oxf) 80:850–855. https://doi.org/10.1111/cen.12411.80(6)

    Article  CAS  Google Scholar 

  44. Faggiano A, Modica R, Lo-Calzo F, Camera L, Napolitano V, Altieri B, de Cicco F, Bottiglieri F, Sesti F, Badalamenti G, Isidori AM, Colao A (2020) Lanreotide Therapy vs active surveillance in MEN1-related pancreatic neuroendocrine tumors < 2 centimeters. J Clin Endocrinol Metab 105(1):dgz007. https://doi.org/10.1210/clinem/dgz0072019;105(1)

    Article  Google Scholar 

  45. Nuñez JE, Donadio M, Filho DR, Rego JF, Barros M, Formiga MN, Lopez R, Riechelmann R (2019) The efficacy of everolimus and sunitinib in patients with sporadic or germline mutated metastatic pancreatic neuroendocrine tumors. J Gastrointest Oncol 10:645–651. https://doi.org/10.21037/jgo.2019.01.33.10(4)

    Article  Google Scholar 

  46. Yao JC, Lombard-Bohas C, Baudin E, Kvols LK, Rougier P, Ruszniewski P et al (2010) Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol 28:69–76. https://doi.org/10.1200/JCO.2009.24.2669

    Article  CAS  Google Scholar 

  47. Chamberlain CE, German MS, Yang K, Wang J, VanBrocklin H, Regan M et al (2018) A patient-derived xenograft model of pancreatic neuroendocrine tumors identifies sapanisertib as a possible new treatment for everolimus-resistant tumors. Mol Cancer Ther 17:2702–2709. https://doi.org/10.1158/1535-7163.MCT-17-1204

    Article  CAS  Google Scholar 

  48. Chu X, Gao X, Jansson L, Quach M, Skogseid B, Barbu A (2013) Multiple microvascular alterations in pancreatic islets and neuroendocrine tumors of a Men1 mouse model. Am J Pathol 182:2355–2367. https://doi.org/10.1016/j.ajpath.2013.02.023

    Article  CAS  Google Scholar 

  49. Thakker RV (2014) Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 386:2–15. https://doi.org/10.1016/j.mce.2013.08.002

    Article  CAS  Google Scholar 

  50. Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8:253–267. https://doi.org/10.1038/nrc2347.2008

    Article  CAS  Google Scholar 

  51. Conemans EB, Raicu-Ionita GM, Pieterman CRC, Dreijerink KMA, Dekkers OM, Hermus AR et al (2018) Expression of p27Kip1 and p18Ink4c in human multiple endocrine neoplasia type 1-related pancreatic neuroendocrine tumors. J Endocrinol Invest 41:655–661. https://doi.org/10.1007/s40618-017-0783-y

    Article  CAS  Google Scholar 

  52. Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Höfler H, Fend F, Graw J, Atkinson MJ (2006) Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci U S A 103:15558–15563. https://doi.org/10.1073/pnas.060387710303

    Article  CAS  Google Scholar 

  53. Lee M, Pellegata NS (2013) Multiple endocrine neoplasia type 4. Front Horm Res 41:63–78. https://doi.org/10.1159/000345670

    Article  CAS  Google Scholar 

  54. de Herder WW, Hofland J (2022) Multiple endocrine neoplasia type 4. In: Feingold KR, Anawalt B, Boyce A, et al. (eds) Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK568728/

  55. Frederiksen A, Rossing M, Hermann P, Ejersted C, Thakker RV, Frost M (2019) Clinical features of multiple endocrine neoplasia type 4: novel pathogenic variant and review of published cases. J Clin Endocrinol Metab 104:3637–3646. https://doi.org/10.1210/jc.2019-00082

    Article  Google Scholar 

  56. Alrezk R, Hannah-Shmouni F, Stratakis CA (2017) MEN4 and CDKN1B mutations: the latest of the MEN syndromes. Endocr Relat Cancer 24:T195–T208. https://doi.org/10.1530/ERC-17-0243

    Article  CAS  Google Scholar 

  57. Andreasi V, Ricci C, Partelli S, Guarneri G, Ingaldi C, Muffatti F, Crippa S, Casadei R, Falconi M (2022) Predictors of disease recurrence after curative surgery for nonfunctioning pancreatic neuroendocrine neoplasms (NF-PanNENs): a systematic review and meta-analysis. J Endocrinol Invest 45:705–718. https://doi.org/10.1007/s40618-021-01705-2

    Article  CAS  Google Scholar 

  58. Ooi LC, Watanabe N, Futamura Y, Sulaiman SF, Darah I, Osada H (2013) Identification of small molecule inhibitors of p27(Kip1) ubiquitination by high-throughput screening. Cancer Sci 104:1461–1467. https://doi.org/10.1111/cas.12246

    Article  CAS  Google Scholar 

  59. Bochis OV, Irimie A, Pichler M, Berindan-Neagoe I (2015) The role of Skp2 and its substrate CDKN1B (p27) in colorectal cancer. J Gastrointestin Liver Dis 24:225–234. https://doi.org/10.15403/jgld.2014.1121.242.skp2

    Article  Google Scholar 

  60. Hao Z, Huang S (2015) E3 ubiquitin ligase Skp2 as an attractive target in cancer therapy. Front Biosci (Landmark Ed) 20:474–490. https://doi.org/10.2741/4320

    Article  CAS  Google Scholar 

  61. Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML et al (1993) Identification of the von Hippel–Lindau disease tumor suppressor gene. Science 260:1317–1320. https://doi.org/10.1126/science.8493574

    Article  CAS  Google Scholar 

  62. Kaelin WG (2008) The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 8:865–873. https://doi.org/10.1038/nrc2502

    Article  CAS  Google Scholar 

  63. Frew IJ, Smole Z, Thoma CR, Krek W (2013) Genetic deletion of the long isoform of the von Hippel–Lindau tumour suppressor gene product alters microtubule dynamics. Eur J Cancer 49:2433–2440. https://doi.org/10.1016/j.ejca.2013.02.024

    Article  CAS  Google Scholar 

  64. Schmid S, Gillessen S, Binet I, Brändle M, Engeler D, Greiner J et al (2014) Management of von Hippel–Lindau disease: an interdisciplinary review. Oncol Res Treat 37:761–771. https://doi.org/10.1159/000369362

    Article  CAS  Google Scholar 

  65. Crespigio J, Berbel LCL, Dias MA, Berbel RF, Pereira SS, Pignatelli D, Mazzuco TL (2018) Von Hippel–Lindau disease: a single gene, several hereditary tumors. J Endocrinol Invest 41:21–31. https://doi.org/10.1007/s40618-017-0683-1

    Article  CAS  Google Scholar 

  66. Maher ER, Neumann HP, Richard S (2011) von Hippel–Lindau disease: a clinical and scientific review. Eur J Hum Genet 19:617–623. https://doi.org/10.1038/ejhg.2010.175.2011

    Article  CAS  Google Scholar 

  67. Singh AD, Shields CL, Shields JA (2001) Von Hippel–Lindau disease. Surv Ophthalmol 46:117–142. https://doi.org/10.1016/s0039-6257(01)00245-4

    Article  CAS  Google Scholar 

  68. Lubensky IA, Pack S, Ault D, Vortmeyer AO, Libutti SK, Choyke PL, Walther MM, Linehan WM, Zhuang Z (1998) Multiple neuroendocrine tumors of the pancreas in von Hippel–Lindau disease patients: histopathological and molecular genetic analysis. Am J Pathol 153:223–231. https://doi.org/10.1016/S0002-9440(10)65563-0

    Article  CAS  Google Scholar 

  69. Gläsker S, Neumann HPH, Koch CA, et al. (2018) Von Hippel–Lindau disease. In: Feingold KR, Anawalt B, Boyce A, et al. (eds) Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. https://www.ncbi.nlm.nih.gov/books/NBK279124/

  70. Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH (2003) von Hippel–Lindau disease. Lancet 361:2059–2067. https://doi.org/10.1016/S0140-6736(03)13643-4

    Article  CAS  Google Scholar 

  71. Charlesworth M, Verbeke CS, Falk GA, Walsh M, Smith AM, Morris-Stiff G (2012) Pancreatic lesions in von Hippel–Lindau disease? A systematic review and meta-synthesis of the literature. J Gastrointest Surg 16:1422–1428. https://doi.org/10.1007/s11605-012-1847-0

    Article  Google Scholar 

  72. de Mestier L, Gaujoux S, Cros J, Hentic O, Vullierme MP, Couvelard A, Cadiot G, Sauvanet A, Ruszniewski P, Richard S, Hammel P (2015) Long-term prognosis of resected pancreatic neuroendocrine tumors in von Hippel–Lindau disease is favorable and not influenced by small tumors left in place. Ann Surg 262(2):384–388. https://doi.org/10.1097/SLA.0000000000000856

    Article  Google Scholar 

  73. Varshney N, Kebede AA, Owusu-Dapaah H, Lather J, Kaushik M, Bhullar JS (2017) A review of Von Hippel–Lindau syndrome. J Kidney Cancer VHL 4:20–29. https://doi.org/10.15586/jkcvhl.2017.88

    Article  Google Scholar 

  74. Krauss T, Ferrara AM, Links TP, Wellner U, Bancos I, Kvachenyuk A et al (2018) Preventive medicine of von Hippel–Lindau disease-associated pancreatic neuroendocrine tumors. Endocr Relat Cancer 25:783–793. https://doi.org/10.1530/ERC-18-0100

    Article  CAS  Google Scholar 

  75. Tirosh A, Sadowski SM, Linehan WM, Libutti SK, Patel D, Nilubol N, Kebebew E (2018) Association of VHL genotype with pancreatic neuroendocrine tumor phenotype in patients with von Hippel–Lindau disease. JAMA Oncol 4:124–126. https://doi.org/10.1001/jamaoncol.2017.3428.2018

    Article  Google Scholar 

  76. Weisbrod AB, Zhang L, Jain M, Barak S, Quezado MM, Kebebew E (2013) Altered PTEN, ATRX, CHGA, CHGB, and TP53 expression are associated with aggressive VHL-associated pancreatic neuroendocrine tumors. Horm Cancer 4:165–175. https://doi.org/10.1007/s12672-013-0134-1

    Article  CAS  Google Scholar 

  77. Weisbrod AB, Liewehr DJ, Steinberg SM, Patterson EE, Libutti SK, Linehan WM, Nilubol N, Kebebew E (2012) Association of type o blood with pancreatic neuroendocrine tumors in von Hippel–Lindau syndrome. Ann Surg Oncol 19:2054–2059. https://doi.org/10.1245/s10434-012-2276-8

    Article  Google Scholar 

  78. Blansfield JA, Choyke L, Morita SY, Choyke PL, Pingpank JF, Alexander HR, Seidel G, Shutack Y, Yuldasheva N, Eugeni M, Bartlett DL, Glenn GM, Middelton L, Linehan WM, Libutti SK (2007) Clinical, genetic and radiographic analysis of 108 patients with von Hippel–Lindau disease (VHL) manifested by pancreatic neuroendocrine neoplasms (PNETs). Surgery 142:814–818. https://doi.org/10.1016/j.surg.2007.09.012

    Article  Google Scholar 

  79. Louise M, Binderup M, Smerdel M, Borgwadt L, Beck Nielsen SS, Madsen MG, Møller HU et al (2022) von Hippel–Lindau disease: updated guideline for diagnosis and surveillance. Eur J Med Genet 65:104538. https://doi.org/10.1016/j.ejmg.2022.104538

    Article  CAS  Google Scholar 

  80. Jimenez C, Cabanillas ME, Santarpia L, Jonasch E, Kyle KL, Lano EA, Matin SF, Nunez RF, Perrier ND, Phan A, Rich TA, Shah B, Williams MD, Waguespack SG (2009) Use of the tyrosine kinase inhibitor sunitinib in a patient with von Hippel-Lindau disease: targeting angiogenic factors in pheochromocytoma and other von Hippel–Lindau disease-related tumors. J Clin Endocrinol Metab 94:386–391. https://doi.org/10.1210/jc.2008-1972

    Article  CAS  Google Scholar 

  81. Ali T, Kandil D, Piperdi B (2012) Long-term disease control with sunitinib in a patient with metastatic pancreatic neuroendocrine tumor (NET) associated with von Hippel–Lindau syndrome (VHL). Pancreas 41:492–493. https://doi.org/10.1097/MPA.0b013e31822a645e

    Article  Google Scholar 

  82. Babinska A, Studniarek M, Świątkowska-Stodulska R, Sworczak K (2015) Sunitinib treatment for multifocal renal cell carcinoma (RCC) and pancreatic neuroendocrine tumor (NET) in patient with von Hippel–Lindau disease. Case report. Neuro Endocrinol Lett Neuro Endocrinol Lett 36:517–520

    CAS  Google Scholar 

  83. Kobayashi A, Takahashi M, Imai H, Akiyama S, Sugiyama S, Komine K, Saijo K, Takahashi M, Takahashi S, Shirota H, Sato N, Fujishima F, Shuin T, Shimodaira H, Ishioka C (2016) Attainment of a long-term favorable outcome by sunitinib treatment for pancreatic neuroendocrine tumor and renal cell carcinoma associated with von Hippel–Lindau disease. Intern Med 55:629–634. https://doi.org/10.2169/internalmedicine.55.5796

    Article  CAS  Google Scholar 

  84. Pirrotta MT, Bernardeschi P, Fiorentini G (2011) Targeted-therapy in advanced renal cell carcinoma. Curr Med Chem 18:1651–1657. https://doi.org/10.2174/092986711795471293

    Article  CAS  Google Scholar 

  85. Wackernagel W, Lackner EM, Pilz S, Mayer C, Stepan V (2010) Von Hippel–Lindau disease: treatment of retinal haemangioblastomas by targeted therapy with systemic bevacizumab. Acta Ophthalmol 88:e271–e272. https://doi.org/10.1111/j.1755-3768.2009.01611.x

    Article  Google Scholar 

  86. Haug AR, Auernhammer CJ, Wängler B, Schmidt GP, Uebleis C, Göke B, Cumming P, Bartenstein P, Tiling R, Hacker M (2010) 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med 51:1349–1356. https://doi.org/10.2967/jnumed.110.075002

    Article  CAS  Google Scholar 

  87. Prasad V, Tiling N, Denecke T, Brenner W, Plöckinger U (2016) Potential role of 68Ga-DOTATOC PET/CT in screening for pancreatic neuroendocrine tumour in patients with von Hippel–Lindau disease. Eur J Nucl Med Mol Imaging 43:2014–2020. https://doi.org/10.1007/s00259-016-3421-6

    Article  CAS  Google Scholar 

  88. Mowrey K, Northrup H, Rougeau P, Hashmi SS, Krueger DA, Ebrahimi-Fakhari D, Towbin AJ, Trout AT, Capal JK, Franz DN, Rodriguez-Buritica D (2021) Frequency, progression, and current management: report of 16 new cases of nonfunctional pancreatic neuroendocrine tumors in tuberous sclerosis complex and comparison with previous reports. Front Neurol 12:627672. https://doi.org/10.3389/fneur.2021.627672

    Article  Google Scholar 

  89. Zamora EA, Aeddula NR (2022) Tuberous Sclerosis. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538492/

  90. Rosset C, Vairo F, Bandeira IC, Correia RL, de Goes FV, da Silva RTB, Bueno LSM, de Miranda Gomes MCS, Galvão HCR, Neri JICF, Achatz MI, Netto CBO, Ashton-Prolla P (2017) Molecular analysis of TSC1 and TSC2 genes and phenotypic correlations in Brazilian families with tuberous sclerosis. PLoS ONE 12:e0185713. https://doi.org/10.1371/journal.pone.0185713

    Article  CAS  Google Scholar 

  91. Dworakowska D, Grossman AB (2009) Are neuroendocrine tumours a feature of tuberous sclerosis? A systematic review. Endocr Relat Cancer 16:45–58. https://doi.org/10.1677/ERC-08-0142

    Article  CAS  Google Scholar 

  92. Eledrisi MS, Stuart CA, Alshanti M (2002) Insulinoma in a patient with tuberous sclerosis: is there an association? Endocr Pract 8:109–112. https://doi.org/10.4158/EP.8.2.109

    Article  Google Scholar 

  93. Evans LM, Geenen KR, O’Shea A, Hedgire SS, Ferrone CR, Thiele EA (2022) Tuberous sclerosis complex-associated nonfunctional pancreatic neuroendocrine tumors: management and surgical outcomes. Am J Med Genet A 188:2666–2671. https://doi.org/10.1002/ajmg.a.62850

    Article  CAS  Google Scholar 

  94. Koc G, Sugimoto S, Kuperman R, Kammen BF, Karakas SP (2017) Pancreatic tumors in children and young adults with tuberous sclerosis complex. Pediatr Radiol 47:39–45. https://doi.org/10.1007/s00247-016-3701-0

    Article  Google Scholar 

  95. Larson AM, Hedgire SS, Deshpande V, Stemmer-Rachamimov AO, Harisinghani MG, Ferrone CR, Shah U, Thiele EA et al (2012) Pancreatic neuroendocrine tumors in patients with tuberous sclerosis complex. Clin Genet 82(6):558–563

    Article  CAS  Google Scholar 

  96. Kolin DL, Duan K, Ngan B, Gerstle JT, Krzyzanowska MK, Somers GR, Mete O (2018) Expanding the spectrum of colonic manifestations in tuberous sclerosis: L-cell neuroendocrine tumor arising in the background of rectal PEComa. Endocr Pathol 29:21–26. https://doi.org/10.1007/s12022-017-9497-0

    Article  CAS  Google Scholar 

  97. Arva NC, Pappas JG, Bhatla T, Raetz EA, Macari M, Ginsburg HB, Hajdu CH (2012) Well-differentiated pancreatic neuroendocrine carcinoma in tuberous sclerosis–case report and review of the literature. Am J Surg Pathol 36:149–153. https://doi.org/10.1097/PAS.0b013e31823d0560

    Article  Google Scholar 

  98. Francalanci P, Diomedi-Camassei F, Purificato C, Santorelli FM, Giannotti A, Dominici C, Inserra A, Boldrini R (2003) Malignant pancreatic endocrine tumor in a child with tuberous sclerosis. Am J Surg Pathol 27:1386–1389. https://doi.org/10.1097/00000478-200310000-00012

    Article  Google Scholar 

  99. Verhoef S, van Diemen-Steenvoorde R, Akkersdijk WL, Bax NM, Ariyurek Y, Hermans CJ, van Nieuwenhuizen O, Nikkels PG, Lindhout D, Halley DJ, Lips K, van den Ouweland AM (1999) Malignant pancreatic tumour within the spectrum of tuberous sclerosis complex in childhood. Eur J Pediatr 158:284–287. https://doi.org/10.1007/s004310051073

    Article  CAS  Google Scholar 

  100. Amarjothi JMV, Jesudason J, Ramasamy V, Babu OLN (2019) Interesting pancreatic tumour in the background of tuberous sclerosis. BMJ Case Reports 12:e227292. https://doi.org/10.1136/bcr-2018-227292

    Article  Google Scholar 

  101. Lamberti G, Brighi N, Maggio I, Manuzzi L, Peterle C, Ambrosini V, Ricci C, Casadei R, Campana D (2018) The role of mTOR in neuroendocrine tumors: future cornerstone of a winning strategy? Int J Mol Sci 19:747. https://doi.org/10.3390/ijms19030747

    Article  CAS  Google Scholar 

  102. Wataya-Kaneda M, Uemura M, Fujita K, Hirata H, Osuga K, Kagitani-Shimono K, Nonomura N, Tuberous Sclerosis Complex Board of Osaka University Hospital (2017) Tuberous sclerosis complex: recent advances in manifestations and therapy. Int J Urol 24:681–691. https://doi.org/10.1111/iju.13390

    Article  Google Scholar 

  103. Yao JC, Phan A, Hoff PM, Chen HX, Charnsangavej C, Yeung SC, Hess K, Ng C, Abbruzzese JL, Ajani JA (2008) Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol 26:1316–1323. https://doi.org/10.1200/JCO.2007.13.6374

    Article  CAS  Google Scholar 

  104. Moavero R, Graziola F, Romagnoli G, Curatolo P (2016) Toward targeted treatments in tuberous sclerosis. Expert Opin Orphan Drugs 4:243–253. https://doi.org/10.1517/21678707.2016.1127158

    Article  CAS  Google Scholar 

  105. Schrader J, Henes FO, Perez D, Burdak-Rothkamm S, Stein A, Izbicki JR, Lohse AW (2017) Successful mTOR inhibitor therapy for a metastastic neuroendocrine tumour in a patient with a germline TSC2 mutation. Ann Oncol 28:904–905. https://doi.org/10.1093/annonc/mdx007

    Article  CAS  Google Scholar 

  106. Ishida N, Miyazu T, Tamura S, Suzuki S, Tani S, Yamade M, Iwaizumi M, Osawa S, Hamaya Y, Shinmura K, Sugimura H, Miura K, Furuta T, Sugimoto K (2020) Tuberous sclerosis patient with neuroendocrine carcinoma of the esophagogastric junction: a case report. World J Gastroenterol 26:7263–7271. https://doi.org/10.3748/wjg.v26.i45.7263

    Article  Google Scholar 

  107. Evans DG, Howard E, Giblin C, Clancy T, Spencer H, Huson SM, Lalloo F (2010) Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A 152A:327–332. https://doi.org/10.1002/ajmg.a.33139

    Article  CAS  Google Scholar 

  108. Goldgar DE, Green P, Parry DM, Mulvihill JJ (1989) Multipoint linkage analysis in neurofibromatosis type 1: an international collaboration. Am J Hum Genet 44:6–12

    CAS  Google Scholar 

  109. Trovó-Marqui AB, Tajara EH (2006) Neurofibromin: a general outlook. Clin Genet 70:1–13. https://doi.org/10.1111/j.1399-0004.2006.00639.x

    Article  Google Scholar 

  110. Jensen RT, Berna MJ, Bingham DB, Norton JA (2008) Inherited pancreatic endocrine tumor syndromes: advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer 113:1807–1843. https://doi.org/10.1002/cncr.23648

    Article  Google Scholar 

  111. Ferner RE (2007) Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 6:340–351. https://doi.org/10.1016/S1474-4422(07)70075-3

    Article  Google Scholar 

  112. Rasmussen SA, Yang Q, Friedman JM (2001) Mortality in neurofibromatosis 1: an analysis using US death certificates. Am J Hum Genet 68:1110–1118. https://doi.org/10.1086/320121

    Article  CAS  Google Scholar 

  113. Geurts JL (2020) Inherited syndromes involving pancreatic neuroendocrine tumors. J Gastrointest Oncol 11:559–566. https://doi.org/10.21037/jgo.2020.03.09

    Article  Google Scholar 

  114. Caiazzo R, Mariette C, Piessen G, Jany T, Carnaille B, Triboulet JP (2006) Type I neurofibromatosis, pheochromocytoma and somatostatinoma of the ampulla. Literature review. Ann Chir 131:393–397

    Article  CAS  Google Scholar 

  115. Cantor AM, Rigby CC, Beck PR, Mangion D (1982) Neurofibromatosis phaeochromocytoma, and somatostatinoma. Br Med J (Clin Res Ed) 285:1618–1619. https://doi.org/10.1136/bmj.285.6355.1618

    Article  CAS  Google Scholar 

  116. Relles D, Baek J, Witkiewicz A, Yeo CJ (2010) Periampullary and duodenal neoplasms in neurofibromatosis type 1: two cases and an updated 20-year review of the literature yielding 76 cases. J Gastrointest Surg 14:1052–1061. https://doi.org/10.1007/s11605-009-1123-0

    Article  Google Scholar 

  117. Burke AP, Sobin LH, Shekitka KM, Federspiel BH, Helwig EB (1990) Somatostatin-producing duodenal carcinoids in patients with von Recklinghausen’s neurofibromatosis. A predilection for black patients. Cancer 65:1591–1595. https://doi.org/10.1002/1097-0142(19900401)65:7%3c1591::aid-cncr2820650723%3e3.0.co;2-n

    Article  CAS  Google Scholar 

  118. Rossi RE, Milanetto AC, Andreasi V, Campana D, Coppa J, Nappo G et al (2021) Risk of preoperative understaging of duodenal neuroendocrine neoplasms: a plea for caution in the treatment strategy. J Endocrinol Invest 44:2227–2234. https://doi.org/10.1007/s40618-021-01528-1

    Article  CAS  Google Scholar 

  119. Gild ML, Tsang V, Samra J, Clifton-Bligh RJ, Tacon L, Gill AJ (2018) Hypercalcemia in glucagon cell hyperplasia and neoplasia (Mahvash syndrome): a new association. J Clin Endocrinol Metab 103:3119–3123. https://doi.org/10.1210/jc.2018-01074

    Article  Google Scholar 

  120. Yu R (2018) Mahvash disease 10 years after discovery. Pancreas 47:511–515. https://doi.org/10.1097/MPA.0000000000001044

    Article  Google Scholar 

  121. Rhyu J, Yu R (2016) Mahvash disease: an autosomal recessive hereditary pancreatic neuroendocrine tumor syndrome. Inter J Endocrine Oncol 3:235–243. https://doi.org/10.2217/ije-2016-0005

    Article  CAS  Google Scholar 

  122. Sipos B, Sperveslage J, Anlauf M, Hoffmeister M, Henopp T, Buch S, Hampe J, Weber A, Hammel P, Couvelard A, Höbling W, Lieb W, Boehm BO, Klöppel G (2015) Glucagon cell hyperplasia and neoplasia with and without glucagon receptor mutations. J Clin Endocrinol Metab 100:E783–E788. https://doi.org/10.1210/jc.2014-4405

    Article  CAS  Google Scholar 

  123. Tang L, Yu R (2016) A novel hereditary pancreatic neuroendocrine tumor syndrome associated with biallelic inactivation of the glucagon receptor. In: Abstracts of the 13th Annual ENETS Conference for the Diagnosis and Treatment of Neuroendocrine Tumor Disease. March 9–11, 2016, Barcelona, Spain: Abstracts. Neuroendocrinology 103 Suppl 1:1–128. https://doi.org/10.1159/000448725

  124. Larger E, Wewer Albrechtsen NJ, Hansen LH, Gelling RW, Capeau J, Deacon CF, Madsen OD, Yakushiji F, De Meyts P, Holst JJ, Nishimura E (2016) Pancreatic α-cell hyperplasia and hyperglucagonemia due to a glucagon receptor splice mutation. Endocrinol Diabetes Metab Case Rep 2016:16–0081. https://doi.org/10.1530/EDM-16-0081

    Article  Google Scholar 

  125. Kang H, Kim S, Lim TS, Lee HW, Choi H, Kang CM, Kim HG, Bang S (2014) A case of alpha-cell nesidioblastosis and hyperplasia with multiple glucagon-producing endocrine cell tumor of the pancreas. Korean J Gastroenterol 63:253–257. https://doi.org/10.4166/kjg.2014.63.4.253

    Article  Google Scholar 

  126. Robbins J, DiMeglio M, Halegoua-DeMarzio D (2021) S2880 Mahvash disease: a case of recurrent liver failure in the setting of octreotide administration. Am J Gastroenterol 116:S1193–S1194. https://doi.org/10.14309/01.ajg.0000785052.64085.6a

    Article  Google Scholar 

  127. Yu R, Chen CR, Liu X, Kodra JT (2012) Rescue of a pathogenic mutant human glucagon receptor by pharmacological chaperones. J Mol Endocrinol 49:69–78. https://doi.org/10.1530/JME-12-0051

    Article  CAS  Google Scholar 

  128. Lim JY, Pommier RF (2021) Clinical features, management, and molecular characteristics of familial small bowel neuroendocrine tumors. Front Endocrinol (Lausanne) 12:622693. https://doi.org/10.3389/fendo.2021.622693

    Article  Google Scholar 

  129. de Mestier L, Pasmant E, Fleury C, Brixi H, Sohier P, Féron T, Diebold MD, Clauser E, Cadiot G, Groupe d’Étude des Tumeurs Endocrines (2017) Familial small-intestine carcinoids: chromosomal alterations and germline inositol polyphosphate multikinase sequencing. Dig Liver Dis 49:98–102. https://doi.org/10.1016/j.dld.2016.10.007

    Article  CAS  Google Scholar 

  130. Sei Y, Zhao X, Forbes J, Szymczak S, Li Q, Trivedi A et al (2015) A hereditary form of small intestinal carcinoid associated with a germline mutation in inositol polyphosphate multikinase. Gastroenterology 149:67–78. https://doi.org/10.1053/j.gastro.2015.04.008

    Article  CAS  Google Scholar 

  131. Hughes MS, Azoury SC, Assadipour Y, Straughan DM, Trivedi AN, Lim RM, Joy G, Voellinger MT, Tang DM, Venkatesan AM, Chen CC, Louie A, Quezado MM, Forbes J, Wank SA (2016) Prospective evaluation and treatment of familial carcinoid small intestine neuroendocrine tumors (SI-NETs). Surgery 159:350–356. https://doi.org/10.1016/j.surg.2015.05.041

    Article  Google Scholar 

  132. Lim E, Goldstraw P, Nicholson AG, Travis WD, Jett JR, Ferolla P, Bomanji J, Rusch VW, Asamura H, Skogseid B, Baudin E, Caplin M, Kwekkeboom D, Brambilla E, Crowley J (2008) Proceedings of the IASLC international workshop on advances in pulmonary neuroendocrine tumors 2007. J Thorac Oncol 3:1194–1201. https://doi.org/10.1097/JTO.0b013e3181861d7b

    Article  Google Scholar 

  133. Moris D, Ntanasis-Stathopoulos I, Tsilimigras DI, Vagios S, Karamitros A, Karaolanis G, Griniatsos J, Papalampros A, Papaconstantinou I, Glantzounis GK, Spartalis E, Blazer DG 3rd, Felekouras E (2018) Update on surgical management of small bowel neuroendocrine tumors. Anticancer Res 38:1267–1278. https://doi.org/10.21873/anticanres.12349

    Article  Google Scholar 

  134. Larouche V, Akirov A, Alshehri S, Ezzat S (2019) Management of small bowel neuroendocrine tumors. Cancers (Basel) 11:1395. https://doi.org/10.3390/cancers11091395

    Article  CAS  Google Scholar 

  135. Liu EH, Solorzano CC, Katznelson L, Vinik AI, Wong R, Randolph G (2015) AACE/ACE disease state clinical review: diagnosis and management of midgut carcinoids. Endocr Pract 21:534–545. https://doi.org/10.4158/EP14464.DSC

    Article  Google Scholar 

  136. Byrne RM, Pommier RF (2018) Small bowel and colorectal carcinoids. Clin Colon Rectal Surg 31:301–308. https://doi.org/10.1055/s-0038-1642054

    Article  Google Scholar 

  137. Strosberg J (2012) Neuroendocrine tumours of the small intestine. Best Pract Res Clin Gastroenterol 26:755–773. https://doi.org/10.1016/j.bpg.2012.12.002

    Article  CAS  Google Scholar 

  138. Caplin ME, Pavel M, Ćwikła JB, Phan AT, Raderer M, Sedláčková E, Cadiot G, Wolin EM, Capdevila J, Wall L, Rindi G, Langley A, Martinez S, Gomez-Panzani E, Ruszniewski P, Investigators CLARINET (2016) Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: the CLARINET open-label extension study. Endocr Relat Cancer 23:191–199. https://doi.org/10.1530/ERC-15-0490

    Article  CAS  Google Scholar 

  139. Kulke MH, Lenz HJ, Meropol NJ, Posey J, Ryan DP, Picus J, Bergsland E, Stuart K, Tye L, Huang X, Li JZ, Baum CM, Fuchs CS (2008) Activity of sunitinib in patients with advanced neuroendocrine tumors. J Clin Oncol 26:3403–3410. https://doi.org/10.1200/JCO.2007.15.9020

    Article  CAS  Google Scholar 

  140. Hobday TJ, Rubin J, Holen K, Picus J, Donehower R, Marschke R et al (2007) MC044h, a phase II trial of sorafenib in patients (pts) with metastatic neuroendocrine tumors (NET): A phase II Consortium (P2C) study. J Clin Oncol 25(18 suppl):4504

    Article  Google Scholar 

  141. Phan AT, Oberg K, Choi J, Harrison LH Jr, Hassan MM, Strosberg JR, Krenning EP, Kocha W, Woltering EA, Maples WJ, North American Neuroendocrine Tumor Society (NANETS) (2010) NANETS consensus guideline for the diagnosis and management of neuroendocrine tumors: well-differentiated neuroendocrine tumors of the thorax (includes lung and thymus). Pancreas 39:784–798. https://doi.org/10.1097/MPA.0b013e3181ec1380

    Article  Google Scholar 

  142. Grande E, Capdevila J, Castellano D, Teulé A, Durán I, Fuster J et al (2015) Pazopanib in pretreated advanced neuroendocrine tumors: a phase II, open-label trial of the Spanish Task Force Group for Neuroendocrine Tumors (GETNE). Ann Oncol 26:1987–1993. https://doi.org/10.1093/annonc/mdv252

    Article  CAS  Google Scholar 

  143. Anlauf M, Bauersfeld J, Raffel A, Koch CA, Henopp T, Alkatout I et al (2009) Insulinomatosis: a multicentric insulinoma disease that frequently causes early recurrent hyperinsulinemic hypoglycemia. Am J Surg Pathol 33:339–346. https://doi.org/10.1097/PAS.0b013e3181874eca

    Article  Google Scholar 

  144. Walker EM, Cha J, Tong X, Guo M, Liu JH, Yu S, Iacovazzo D, Mauvais-Jarvis F, Flanagan SE, Korbonits M, Stafford J, Jacobson DA, Stein R (2021) Sex-biased islet β cell dysfunction is caused by the MODY MAFA S64F variant by inducing premature aging and senescence in males. Cell Rep 37:109813. https://doi.org/10.1016/j.celrep.2021.109813

    Article  CAS  Google Scholar 

  145. Iacovazzo D, Flanagan SE, Walker E, Quezado R, de Sousa Barros FA, Caswell R et al (2018) MAFA missense mutation causes familial insulinomatosis and diabetes mellitus. Proc Natl Acad Sci U S A 115:1027–1032. https://doi.org/10.1073/pnas.1712262115

    Article  CAS  Google Scholar 

  146. Fottner C, Sollfrank S, Ghiasi M, Adenaeuer A, Musholt T, Schad A, Miederer M, Schadmand-Fischer S, Weber MM, Lackner KJ, Rossmann H (2022) Second MAFA variant causing a phosphorylation defect in the transactivation domain and familial insulinomatosis. Cancers (Basel) 14:1798. https://doi.org/10.3390/cancers14071798

    Article  CAS  Google Scholar 

  147. Yamada Y, Kitayama K, Oyachi M, Higuchi S, Kawakita R, Kanamori Y, Yorifuji T (2020) Nationwide survey of endogenous hyperinsulinemic hypoglycemia in Japan (2017–2018): Congenital hyperinsulinism, insulinoma, non-insulinoma pancreatogenous hypoglycemia syndrome and insulin autoimmune syndrome (Hirata’s disease). J Diabetes Investig 11:554–563. https://doi.org/10.1111/jdi.13180

    Article  Google Scholar 

  148. Mintziras I, Peer K, Goerlach J, Goebel JN, Ramaswamy A, Slater EP, Kann PH, Bartsch DK (2021) Adult proinsulinomatosis associated with a MAFA germline mutation as a rare cause of recurrent hypoglycemia. Pancreas 50:1450–1453. https://doi.org/10.1097/MPA.0000000000001933

    Article  CAS  Google Scholar 

  149. Ye L, Wang W, Ospina NS, Jiang L, Christakis I, Lu J, Zhou Y, Zhu W, Cao Y, Wang S, Perrier ND, Young WF Jr, Ning G, Wang W (2017) Clinical features and prognosis of thymic neuroendocrine tumours associated with multiple endocrine neoplasia type 1: a single-centre study, systematic review and meta-analysis. Clin Endocrinol (Oxf) 87:706–716. https://doi.org/10.1111/cen.13480

    Article  CAS  Google Scholar 

  150. Araujo-Castro M, Pascual-Corrales E, Molina-Cerrillo J, Moreno Mata N, Alonso-Gordoa T (2022) Bronchial carcinoids: from molecular background to treatment approach. Cancers 14:520. https://doi.org/10.3390/cancers14030520

    Article  CAS  Google Scholar 

  151. Marini F, Giusti F, Tonelli F, Brandi ML (2021) Pancreatic neuroendocrine neoplasms in multiple endocrine neoplasia type 1. Int J Mol Sci 22:4041. https://doi.org/10.3390/ijms2208404

    Article  CAS  Google Scholar 

  152. Singh Ospina N, Thompson GB, Nichols FC, Cassivi SD, Young WF (2015) Thymic and bronchial carcinoid tumors in multiple endocrine neoplasia type 1: the Mayo Clinic experience from 1977 to 2013. Horm Cancer 6:247–253. https://doi.org/10.1007/s12672-015-0228-z

    Article  CAS  Google Scholar 

  153. Bartsch DK, Albers MB, Lopez CL, Apitzsch JC, Walthers EM, Fink L, Fendrich V, Slater EP, Waldmann J, Anlauf M (2016) Bronchopulmonary neuroendocrine neoplasms and their precursor lesions in multiple endocrine neoplasia type 1. Neuroendocrinology 103:240–247. https://doi.org/10.1159/000435921

    Article  CAS  Google Scholar 

  154. van den Broek MFM, de Laat JM, van Leeuwaarde RS, van de Ven AC, de Herder WW, Dekkers OM, Drent ML, Kerstens MN, Bisschop PH, Havekes B, Hackeng WM, Brosens LAA, Vriens MR, Buikhuisen WA, Valk GD (2021) The management of neuroendocrine tumors of the lung in MEN1: results from the Dutch MEN1 Study Group. J Clin Endocrinol Metab 106:e1014–e1027. https://doi.org/10.1210/clinem/dgaa800

    Article  Google Scholar 

  155. Lecomte P, Binquet C, le Bras M, Tabarin A, Cardot-Bauters C, Borson-Chazot F et al (2018) Histologically proven bronchial neuroendocrine tumors in MEN1: a GTE 51-case cohort study. World J Surg 42:143–152. https://doi.org/10.1007/s00268-017-4135-z

    Article  CAS  Google Scholar 

  156. Sachithanandan N, Harle RA, Burgess JR (2005) Bronchopulmonary carcinoid in multiple endocrine neoplasia type 1. Cancer 103:509–515. https://doi.org/10.1002/cncr.20825

    Article  Google Scholar 

  157. Guilmette J, Nosé V (2019) Paraneoplastic syndromes and other systemic disorders associated with neuroendocrine neoplasms. Semin Diagn Pathol 36:229–239. https://doi.org/10.1053/j.semdp.2019.03.002

    Article  Google Scholar 

  158. Ruggeri RM, Altieri B, Grossrubatcher E, Minotta R, Tarsitano MG, Zamponi V, Isidori AM, Faggiano A, Colao AM, NIKE Group (2022) Sex differences in carcinoid syndrome: a gap to be closed. Rev Endocr Metab Disord 23:659–669. https://doi.org/10.1007/s11154-022-09719-8

    Article  Google Scholar 

  159. Reuling EMBP, Dickhoff C, Plaisier PW, Coupé VMH, Mazairac AHA, Lely RJ, Bonjer HJ, Daniels JMA (2018) Endobronchial treatment for bronchial carcinoid: patient selection and predictors of outcome. Respiration 95:220–227. https://doi.org/10.1159/000484984

    Article  Google Scholar 

  160. Prinzi N, Rossi RE, Proto C, Leuzzi G, Raimondi A, Torchio M et al (2021) Recent advances in the management of typical and atypical lung carcinoids. Clin Lung Cancer 22:161–169. https://doi.org/10.1016/j.cllc.2020.12.004

    Article  Google Scholar 

  161. Ferolla P, Brizzi MP, Meyer T, Mansoor W, Mazieres J, do Cao C, et al (2017) Efficacy and safety of long-acting pasireotide or everolimus alone or in combination in patients with advanced carcinoids of the lung and thymus (LUNA): an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol 18:1652–1664. https://doi.org/10.1016/S1470-2045(17)30681-2

    Article  CAS  Google Scholar 

  162. Shah MH, Goldner WS, Halfdanarson TR, Bergsland E, Berlin JD, Halperin D et al (2018) NCCN guidelines insights: neuroendocrine and adrenal tumors, version 2.2018. J Natl Compr Canc Netw 16:693–702. https://doi.org/10.6004/jnccn.2018.0056

    Article  CAS  Google Scholar 

  163. Mariniello A, Bodei L, Tinelli C, Baio SM, Gilardi L, Colandrea M, Papi S, Valmadre G, Fazio N, Galetta D, Paganelli G, Grana CM (2016) Long-term results of PRRT in advanced bronchopulmonary carcinoid. Eur J Nucl Med Mol Imaging 43:441–452. https://doi.org/10.1007/s00259-015-3190-7

    Article  CAS  Google Scholar 

  164. Fazio N, Buzzoni R, Delle Fave G, Tesselaar ME, Wolin E, van Cutsem E et al (2018) Everolimus in advanced, progressive, well-differentiated, non-functional neuroendocrine tumors: RADIANT-4 lung subgroup analysis. Cancer Sci 109:174–181. https://doi.org/10.1111/cas.13427

    Article  CAS  Google Scholar 

  165. Sakurai A, Imai T, Kikumori T, Horiuchi K, Okamoto T, Uchino S, Kosugi S, Suzuki S, Suyama K, Yamazaki M, Sato A, MEN Consortium of Japan (2013) Thymic neuroendocrine tumour in multiple endocrine neoplasia type 1: female patients are not rare exceptions. Clin Endocrinol (Oxf) 78:248–254. https://doi.org/10.1111/j.1365-2265.2012.04467.x

    Article  Google Scholar 

  166. de Laat JM, Pieterman CR, van den Broek MF, Twisk JW, Hermus AR, Dekkers OM, de Herder WW, van der Horst-Schrivers AN, Drent ML, Bisschop PH, Havekes B, Vriens MR, Valk GD (2014) Natural course and survival of neuroendocrine tumors of thymus and lung in MEN1 patients. J Clin Endocrinol Metab 99:3325–3333. https://doi.org/10.1210/jc.2014-1560

    Article  CAS  Google Scholar 

  167. Christakis I, Qiu W, Silva Figueroa AM, Hyde S, Cote GJ, Busaidy NL, Williams M, Grubbs E, Lee JE, Perrier ND (2016) Clinical features, treatments, and outcomes of patients with thymic carcinoids and multiple endocrine neoplasia type 1 syndrome at MD Anderson Cancer Center. Horm Cancer 7:279–287. https://doi.org/10.1007/s12672-016-0269-y

    Article  CAS  Google Scholar 

  168. Goudet P, Murat A, Binquet C, Cardot-Bauters C, Costa A, Ruszniewski P et al (2010) Risk factors and causes of death in men1 disease. a gte (Groupe D’etude des Tumeurs Endocrines) cohort study among 758 patients. World J Surg 34:249–255. https://doi.org/10.1007/s00268-009-0290-1

    Article  Google Scholar 

  169. Ito T, Igarashi H, Uehara H, Berna MJ, Jensen RT (2013) Causes of death and prognostic factors in multiple endocrine neoplasia type 1: a prospective study: comparison of 106 MEN1/Zollinger-Ellison syndrome patients with 1613 literature MEN1 patients with or without pancreatic endocrine tumors. Medicine (Baltimore) 92:135–181. https://doi.org/10.1097/MD.0b013e3182954af1

    Article  CAS  Google Scholar 

  170. Muto Y, Okuma Y (2022) Therapeutic options in thymomas and thymic carcinomas. Expert Rev Anticancer Ther 22:401–413. https://doi.org/10.1080/14737140.2022.2052278

    Article  CAS  Google Scholar 

  171. Watanabe H, Fujishima F, Komoto I, Imamura M, Hijioka S, Hara K et al (2022) Somatostatin receptor 2 expression profiles and their correlation with the efficacy of somatostatin analogues in gastrointestinal neuroendocrine tumors. Cancers (Basel) 14:775. https://doi.org/10.3390/cancers14030775

    Article  CAS  Google Scholar 

  172. Zalatnai A, Galambos E, Perjési E (2019) Importance of immunohistochemical detection of somatostatin receptors. Pathol Oncol Res 25:521–525. https://doi.org/10.1007/s12253-018-0426-4

    Article  CAS  Google Scholar 

  173. Mehta S, de Reuver PR, Gill P, Andrici J, D’Urso L, Mittal A, Pavlakis N, Clarke S, Samra JS, Gill AJ (2015) Somatostatin receptor SSTR-2a expression is a stronger predictor for survival Than Ki-67 in pancreatic neuroendocrine tumors. Medicine (Baltimore) 94:e1281. https://doi.org/10.1097/MD.0000000000001281

    Article  CAS  Google Scholar 

  174. Qian ZR, Li T, Ter-Minassian M, Yang J, Chan JA, Brais LK et al (2016) Association between somatostatin receptor expression and clinical outcomes in neuroendocrine tumors. Pancreas 45:1386–1393. https://doi.org/10.1097/MPA.0000000000000700

    Article  CAS  Google Scholar 

  175. Volante M, Brizzi MP, Faggiano A, La Rosa S, Rapa I, Ferrero A, Mansueto G, Righi L, Garancini S, Capella C, De Rosa G, Dogliotti L, Colao A, Papotti M (2007) Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 20:1172–1182. https://doi.org/10.1038/modpathol.3800954

    Article  CAS  Google Scholar 

  176. Mennetrey C, le Bras M, Bando-Delaunay A, Al-Mansour L, Haissaguerre M, Batisse-Lignier M et al (2022) Value of somatostatin receptor PET/CT in patients with MEN1 at various stages of their disease. J Clin Endocrinol Metab 107:e2056–e2064. https://doi.org/10.1210/clinem/dgab891

    Article  Google Scholar 

  177. Hackeng WM, Brosens LAA, Kim JY, O’Sullivan R, Sung YN, Liu TC et al (2022) Non-functional pancreatic neuroendocrine tumours: ATRX/DAXX and alternative lengthening of telomeres (ALT) are prognostically independent from ARX/PDX1 expression and tumour size. Gut 71:961–973. https://doi.org/10.1136/gutjnl-2020-322595

    Article  CAS  Google Scholar 

  178. Rindi G, Mete O, Uccella S, Basturk O, La Rosa S, Brosens LAA, Ezzat S, de Herder WW, Klimstra DS, Papotti M, Asa SL (2022) Overview of the 2022 WHO classification of neuroendocrine neoplasms. Endocr Pathol 33:115–154. https://doi.org/10.1007/s12022-022-09708-2

    Article  CAS  Google Scholar 

  179. Kulke MH, Hornick JL, Frauenhoffer C, Hooshmand S, Ryan DP, Enzinger PC, Meyerhardt JA, Clark JW, Stuart K, Fuchs CS, Redston MS (2009) O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin Cancer Res 15:338–345. https://doi.org/10.1158/1078-0432.CCR-08-1476

    Article  CAS  Google Scholar 

  180. della Monica R, Cuomo M, Visconti R, di Mauro A, Buonaiuto M, Costabile D et al (2022) Evaluation of MGMT gene methylation in neuroendocrine neoplasms. Oncol Res 28:837–845. https://doi.org/10.3727/096504021X16214197880808

    Article  Google Scholar 

  181. Faivre S, Niccoli P, Castellano D, Valle JW, Hammel P, Raoul JL et al (2017) Sunitinib in pancreatic neuroendocrine tumors: updated progression-free survival and final overall survival from a phase III randomized study. Ann Oncol 28:339–343. https://doi.org/10.1093/annonc/mdw561.)

    Article  CAS  Google Scholar 

  182. Puliani G, Sesti F, Anastasi E, Verrico M, Tarsitano MG, Feola T et al (2022) Angiogenic factors as prognostic markers in neuroendocrine neoplasms. Endocrine 76:208–217. https://doi.org/10.1007/s12020-021-02942-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review is part of the ‘Neuroendocrine Tumours Innovation Knowledge and Education’ project led by Prof. Annamaria Colao, Prof. Antongiulio Faggiano, and Professor Andrea Isidori, which aims at increasing the knowledge on neuroendocrine tumors. We would like to acknowledge all the Collaborators of this project: I. Aini, M. Albertelli, Y. Alessi, B. Altieri, S. Antonini, L. Barrea, F. Birtolo, F. Campolo, G. Cannavale, C. Cantone, S. Carra, R. Centello, A. Cozzolino, S. Di Molfetta, V. Di Vito, G. Fanciulli, T. Feola, F. Ferraù, S. Gay, E. Giannetta, F. Grillo, E. Grossrubatscher, V. Guarnotta, A. La Salvia, A. Laffi, A. Lania, A. Liccardi, P. Malandrino, R. Mazzilli, E. Messina, N Mikovic, R. Minotta, R. Modica, G. Muscogiuri, C. Pandozzi, G. Pugliese, G. Puliani, A. Ragni, M. Rubino, F. Russo, F. Sesti, L. Verde, A. Veresani, C. Vetrani, G. Vitale, V. Zamponi, and I. Zanata.

Funding

The research was not supported by any funding.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors made substantial contributions to the study conception and design. All authors approved the final version for submission for publication. All authors agree to be accountable for the accuracy and integrity of the work.

Corresponding author

Correspondence to R. M. Ruggeri.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial competing interests to disclose.

Ethical approval

The authors have no ethical conflict to disclose. The study was performed in accordance with the principles of the Declaration of Helsinki. Local Ethics Research Committee approval was obtained.

Informed consent

Written informed consent was obtained from the patients for publication of this case series.

Research involving human participants and/or animals

No animals were used for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggeri, R.M., Benevento, E., De Cicco, F. et al. Neuroendocrine neoplasms in the context of inherited tumor syndromes: a reappraisal focused on targeted therapies. J Endocrinol Invest 46, 213–234 (2023). https://doi.org/10.1007/s40618-022-01905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-022-01905-4

Keywords

Navigation