Skip to main content
Log in

The biological characterization of neuroendocrine tumors: The role of neuroendocrine markers

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Neuroendocrine tumors (NET) may originate in different organs, from cells embriologically different but expressing common phenotypic characteristics, such as: the immuno-re-activity for markers of neuroendocrine differentiation (defined as “pan-neuroendocrine”), the capacity to secrete specific or aspecific peptide and hormones and the expression of some receptors, that are at the basis of the current diagnostic and therapeutical approach, peculiar to these tumors. NET have been conventionally distinguished in functioning, when associated with a recognized clinical endocrine syndrome, and non-functioning. However, this terminology may be misleading, since the great majority of NET may secrete neuroendocrine peptides, which can be employed as clinical markers for both diagnosis and follow-up. On the other hand, tissue immuno-reactivity for specific hormones does not always reflect secretory activity of the tumor cells. Finally, receptors and genetic markers are acquiring a relevant role in the characterization of NET, both improving knowledge of biology and physiopathology of NET, as well as in developing specific strategies to establish an early diagnosis and targeted therapies, to adopt prophylactic strategies in familial forms, and to identify more efficacious targets for therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearse AG. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem 1969, 17: 303–13.

    Article  PubMed  CAS  Google Scholar 

  2. Capella C, Heitz PU, Höfler H, Solcia E, Klöppel G. Revised classification of neuroendocrine tumours of the lung, pancreas and gut. Virchows Arch 1995, 425: 547–60.

    Article  PubMed  CAS  Google Scholar 

  3. Baudin E, Bidart JM, Rougier P, et al. Screening for multiple endocrine neoplasia type 1 and hormonal production in apparently sporadic neuroendocrine tumors. J Clin Endocrinol Metab 1999, 84: 69–75.

    PubMed  CAS  Google Scholar 

  4. Lamberts SW, Hofland LJ, Nobels FR. Neuroendocrine tumor markers. Front Neuroendocrinol 2001, 22: 309–39.

    Article  PubMed  CAS  Google Scholar 

  5. Hachitanda Y, Tsuneyoshi M, Enjoji M. Expression of panneuroendocrine proteins in 53 neuroblastic tumors. An immunohistochemical study with neuron-specific enolase, chromogranin, and synaptophysin. Arch Pathol Lab Med 1989, 113: 381–4.

    CAS  Google Scholar 

  6. Gould VE. Synaptophysin. A new and promising panneuroendocrine marker. Arch Pathol Lab Med 1987, 111: 791–4.

    PubMed  CAS  Google Scholar 

  7. Rindi G, Buffa R, Sessa F, Tortora O, Solcia E. Chromogranin A, B and C immunoreactivities of mammalian endocrine cells. Distribution, distinction from costored hormones/prohormones and relationship with the argyrophil component of secretory granules. Histochemistry 1986, 85: 19–28.

    CAS  Google Scholar 

  8. Eriksson B, Oberg K, Stridsberg M. Tumor markers in neuroendocrine tumors. Digestion 2000, 62(Suppl 1): 33–8.

    Article  PubMed  CAS  Google Scholar 

  9. Jiang SX, Kameya T, Shoji M, Dobashi Y, Shinada J, Yoshimura H. Large cell neuroendocrine carcinoma of the lung: a histologic and immunohistochemical study of 22 cases. Am J Surg Pathol 1998, 22: 526–37.

    Article  PubMed  CAS  Google Scholar 

  10. Abbona G, Papotti M, Viberti L, Macri L, Stella A, Bussolati G. Chromogranin A gene expression in non-small cell lung carcinomas. J Pathol 1998, 186: 151–6.

    Article  PubMed  CAS  Google Scholar 

  11. Hammond EH, Yowell RL, Flinner RL. Neuroendocrine carcinomas: role of immunocytochemistry and electron microscopy. Hum Pathol 1998, 29: 1367–71.

    Article  PubMed  CAS  Google Scholar 

  12. Brambilla E, Lantuejoul S, Sturm N. Divergent differentiation in neuroendocrine lung tumors. Semin Diagn Pathol 2000, 17: 138–48.

    PubMed  CAS  Google Scholar 

  13. Slodkowska J, Zych J, Szturmowicz M, Demkow U, Rowinska-Zakrzewska E, Roszkowski-Sliz K. Neuroendocrine pheno-type of non-small cell lung carcinoma: immunohistological evaluation and biochemical study. Int J Biol Markers 2005, 20: 217–26.

    PubMed  CAS  Google Scholar 

  14. Thomas P, Battifora H, Manderino GL, Patrick J. A monoclonal antibody against neuron-specific enolase. Immunohistochemical comparison with a polyclonal anti-serum. Am J Clin Pathol 1987, 88: 146–52.

    CAS  Google Scholar 

  15. Gould VE, Lee I, Wiedenmann B, Moll R, Chejfec G, Franke WW. Synaptophysin: a novel marker for neurons, certain neuroendocrine cells, and their neoplasms. Hum Pathol 1986, 17: 979–83.

    Article  PubMed  CAS  Google Scholar 

  16. Moll I, Bohnert E, Herbst C, Förster W, Moll R, Franke WW. Establishment and characterization of two Merkel cell tumor cultures. J Invest Dermatol 1994, 102: 346–53.

    Article  PubMed  CAS  Google Scholar 

  17. Lee V, Trojanowski JQ, Schlaepfer WW. Induction of neurofilament triplet proteins in PC12 cells by nerve growth factor. Brain Res 1982, 238: 169–80.

    Article  PubMed  CAS  Google Scholar 

  18. Wick MR. Immunohistology of neuroendocrine and neuroectodermal tumors. Semin Diagn Pathol 2000, 17: 194–203.

    PubMed  CAS  Google Scholar 

  19. Zeromski J, Nyczak E, Dyszkiewicz W. Significance of cell adhesion molecules, CD56/NCAM in particular, in human tumor growth and spreading. Folia Histochem Cytobiol 2001, 39(Suppl 2): 36–7.

    PubMed  Google Scholar 

  20. Shih IM, Nesbit M, Herlyn M, Kurman RJ. A new Mel-CAM (CD146)-specific monoclonal antibody, MN-4, on paraffin-embedded tissue. Mod Pathol 1998, 11: 1098–106.

    PubMed  CAS  Google Scholar 

  21. Nothias F, Vernier P, von Boxberg Y, Mirman S, Vincent JD. Modulation of NCAM polysialylation is associated with morphofunctional modifications in the hypothalamo-neurohypophysial system during lactation. Eur J Neurosci 1997, 9: 1553–65.

    Article  PubMed  CAS  Google Scholar 

  22. Seldeslagh KA, Lauweryns JM. NCAM expression in the pulmonary neural and diffuse neuroendocrine cell system. Microsc Res Tech 1997, 37: 69–76.

    Article  PubMed  CAS  Google Scholar 

  23. Rayhan N, Sano T, Qian ZR, Obari AK, Hirokawa M. Histological and immunohistochemical study of composite neuroendocrine-exocrine carcinomas of the stomach. J Med Invest 2005, 52: 191–202.

    Article  PubMed  Google Scholar 

  24. Kontogianni K, Nicholson AG, Butcher D, Sheppard MN. CD56: a useful tool forthe diagnosis of small cell lung carcinomas on biopsies with extensive crush artefact. J Clin Pathol 2005, 58: 978–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Yamamoto J, Ohshima K, Nabeshima K, Ikeda S, Iwasaki H, Kikuchi M. Comparative study of primary mammary small cell carcinoma, carcinoma with endocrine features and invasive ductal carcinoma. Oncol Rep 2004, 11: 825–31.

    PubMed  Google Scholar 

  26. Khan A, Tischler AS, Patwardhan NA, DeLellis RA. Calcitonin immunoreactivity in neoplastic and hyperplastic parathyroid glands: an immunohistochemical study. Endocr Pathol 2003, 14: 249–55.

    Article  PubMed  CAS  Google Scholar 

  27. Rossi G, Marchioni A, Milani M, et al. TTF-1, cytokeratin 7, 34betaE12, and CD56/NCAM immunostaining in the sub-classification of large cell carcinomas of the lung. Am J Clin Pathol 2004, 122: 884–93.

    Article  PubMed  CAS  Google Scholar 

  28. Sturm N, Rossi G, Lantuéjoul S, et al. 34BetaE12 expression along the whole spectrum of neuroendocrine proliferations of the lung, from neuroendocrine cell hyperplasia to small cell carcinoma. Histopathology 2003, 42: 156–66.

    Article  PubMed  CAS  Google Scholar 

  29. Nobels FR, Kwekkeboom DJ, Coopmans W, et al. Chromogranin A as serum marker for neuroendocrine neoplasia: comparison with neuron-specific enolase and the alpha-subunitof glycoprotein hormones. J Clin Endocrinol Metab 1997, 82: 2622–8.

    PubMed  CAS  Google Scholar 

  30. Baudin E, Gigliotti A, Ducreux M, et al. Neuron-specific enolase and chromogranin A as markers of neuroendocrine tumours. Br J Cancer 1998, 78: 1102–7.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Baudin E, Bidart JM, Bachelot A, et al. Impact of chromogranin A measurement in the work-up of neuroendocrine tumors. Ann Oncol 2001, 12(Suppl 2): S79–82.

    Article  PubMed  Google Scholar 

  32. Franke WG, Pinkert J, Runge R, Bredow J, Wunderlich G, Koch R. Chromogranin A: an additional tumor marker for postoperative recurrence and metastases of medullary thyroid carcinomas? Anticancer Res 2000, 20: 5257–60.

    PubMed  CAS  Google Scholar 

  33. Janson ET, Holmberg L, Stridsberg M, et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol 1997, 8: 685–90.

    Article  PubMed  CAS  Google Scholar 

  34. Granberg D, Stridsberg M, Seensalu R, et al. Plasma chromogranin A in patients with multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 1999, 84: 2712–7.

    Article  PubMed  CAS  Google Scholar 

  35. Stridsberg M, Eriksson B, Oberg K, Janson ET. A comparison between three commercial kits for chromogranin A measurements. J Endocrinol 2003, 177: 337–41.

    Article  PubMed  CAS  Google Scholar 

  36. Carling RS, Degg TJ, Allen KR, Bax ND, Barth JH. Evaluation of whole blood serotonin and plasma and urine 5-hydroxyindole acetic acid in diagnosis of carcinoid disease. Ann Clin Biochem 2002, 39: 577–82.

    Article  PubMed  CAS  Google Scholar 

  37. Tomassetti P, Migliori M, Simoni P, et al. Diagnostic value of plasma chromogranin A in neuroendocrine tumours. Eur J Gastroenterol Hepatol 2001, 13: 55–8.

    Article  PubMed  CAS  Google Scholar 

  38. Orlefors H, Sundin A, Lu L, et al. Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumours with 11C-5-hydroxytryptophan positron emission tomography. Eur J Nucl Med Mol Imaging 2006, 33: 60–5.

    Article  PubMed  CAS  Google Scholar 

  39. Ardill JE, Erikkson B. The importance of the measurement of circulating markers in patients with neuroendocrine tumours of the pancreas and gut. Endocr Relat Cancer 2003, 10: 459–62.

    Article  PubMed  CAS  Google Scholar 

  40. Pelosi G, Bresaola E, Bogina G, et al. Endocrine tumors of the pancreas: Ki-67 immunoreactivity on paraffin sections is an independent predictor for malignancy: a comparative study with proliferating-cell nuclear antigen and progesterone receptor protein immunostaining, mitotic index, and other clinicopathologic variables. Hum Pathol 1996, 27: 1124–34.

    Article  PubMed  CAS  Google Scholar 

  41. Van Eeden S, Quaedvlieg PF, Taal BG, Offerhaus GJ, Lamers CB, Van Velthuysen ML. Classification of low-grade neuroendocrine tumors of midgut and unknown origin. Hum Pathol 2002, 33: 1126–32.

    Article  PubMed  Google Scholar 

  42. Beasley MB, Lantuejoul S, Abbondanzo S, et al. The P16/cyclin D1/Rb pathway in neuroendocrine tumors of the lung. Hum Pathol 2003, 34: 136–42.

    Article  PubMed  CAS  Google Scholar 

  43. Brambilla E, Negoescu A, Gazzeri S, et al. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol 1996, 149: 1941–52.

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Coppola D, Clarke M, Landreneau R, Weyant RJ, Cooper D, Yousem SA. Bcl-2, p53, CD44, and CD44v6 isoform expression in neuroendocrine tumors of the lung. Mod Pathol 1996, 9: 484–90.

    PubMed  CAS  Google Scholar 

  45. Ferolla P, Giovenali P, Ascani S, et al. CD44 Expression as a Major prognostic factor in lung neuroendocrine tumors” (abstract) 12th Meeting of the European Neuroendocrine Association, Athens 20–24 October 2006.

  46. Faggiano A, Talbot M, Lacroix L, et al. Differential expression of galectin-3 in medullary thyroid carcinoma and C-cell hyperplasia. Clin Endocrinol (Oxf) 2002, 57: 813–9.

    Article  CAS  Google Scholar 

  47. Calender A. Molecular genetics of neuroendocrine tumors. Digestion 2000, 62(Suppl 1): 3–18.

    Article  PubMed  CAS  Google Scholar 

  48. Birkenkamp-Demtröder K, Wagner L, Brandt Sørensen F, et al. Secretagogin is a novel marker for neuroendocrine differentiation. Neuroendocrinology 2005, 82: 121–38.

    Article  PubMed  CAS  Google Scholar 

  49. Lai M, Lü B, Xing X, Xu E, Ren G, Huang Q. Secretagogin, a novel neuroendocrine marker, has a distinct expression pattern from chromogranin A Virchow Archiv 2006, 449: 402–9.

    Article  CAS  Google Scholar 

  50. Turner GB, Johnston BT, McCance DR, et al. Circulating markers of prognosis and response to treatment in patients with midgut carcinoid tumours. Gut 2006, 55: 1586–91.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Pavel ME, Hoppe S, Papadopoulos T, et al. Adrenomedullin is a novel marker of tumor progression in neuroendocrine carcinomas. Horm Metab Res 2006, 38: 112–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ferolla MD, PhD.

Additional information

Both authors contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferolla, P., Faggiano, A., Mansueto, G. et al. The biological characterization of neuroendocrine tumors: The role of neuroendocrine markers. J Endocrinol Invest 31, 277–286 (2008). https://doi.org/10.1007/BF03345602

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345602

Key-words

Navigation