Skip to main content

Advertisement

Log in

Applications of Nanoscaffolds in Tissue Engineering

  • Naturopathy, Nanotechnology, Nutraceuticals, and Immunotherapy in Cancer Research (H Latha, Section Editors)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Consistently, a huge number of surgeries are performed to supplant tissue which is damaged through infection or injury. The emerging field of tissue engineering aims to recover injured tissues by consolidating cells from the host body or donor’s body with exceptionally porous scaffold biomaterials that can act as a template for tissue recovery, to control the development of new tissue. Signals, cells, and scaffolds are triad components of tissue engineering that combine to produce functional tissue and organs.

Recent Findings

Pubmed and Google Scholar are the search engines used to sort out relevant papers on nanoscaffolds and their application in tissue engineering and regenerative medicine. Nanoscaffolding is known to be a clinical cycle used to regrow bone and tissue, including appendages and organs; likewise, it has been utilized to regrow the skin, but it has not been utilized yet for the development of complex organs like the heart etc. Different synthesis methods are being employed to engineer the scaffolds, such as electrospinning, layer-by-layer assembly, 3D printing, particle leaching etc. Natural bioscaffolds have also been used for growing cells and regenerative biology.

Summary

This article portrays the functional scaffolds used in different kinds of tissue engineering such as bone, liver, cartilage, vascular tissue, skin and cardiac tissue, etc., and an overview of various types of materials used in scaffolding for the tissue engineering applications and future aspects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Abbreviations

TE:

Tissue engineering

ECM:

Extracellular matrix

SIS:

Small intestine submucosa

GMP:

Good manufacturing practice

KCl:

Potassium chloride

NaCl:

Sodium chloride

PCL:

Polycaprolactone

PEO:

Polyethylene oxide

PBS:

Polybutylene succinate

CNC:

Cellulose nanocrystals

Wt:

Weight

h:

Hour

NPs:

Nanoparticles

PNIPAm:

Poly(N-isopropylacrylamide)

AuNP:

Gold nanoparticle

TiO2 :

Titanium dioxide

Ti:

Titanium

PLGA:

Poly(lactide-co-glycolic) acid

PLA:

Polylactic acid

AgNPs:

Silver nanoparticles

IL-6:

Interleukin 6

IL-10:

Interleukin 10

MMPs:

Matrix metalloproteinase

PMNs:

Polymorphonuclear leukocytes

BMP-2 peptide:

Bone morphogenetic protein 2

HCAEC:

Human coronary artery endothelial cells

PHAs:

Polyhydroxyalkanoates (PHAs)

CNT’s:

Carbon nanotubes

iPSC:

Induced pluripotent stem cells

QOS:

Quaternary ammonium silane

CEF:

Cephalexin monohydrate

HNT:

Halloysite nanotubes

PVA:

Poly(vinyl alcohol)

nHAp:

Nano-hydroxyapatite

PG-NFs:

Poly(vinyl alcohol)-gellan gum nanofiber

SEM:

Scanning electron microscopy

FTIR:

Fourier transformation infrared spectroscopy

hDPSCs:

Human dental pulp–derived stem cells

CMC:

Carboxymethyl chitosan

wjhMSC-MT:

Wharton’s jelly–derived mesenchymal stem cell microtissue

ALP:

Alkaline phosphatase

OC:

Csteocalcin

CNF:

Cellulose nanofibrils

RGO:

Reduced graphene oxide

BM-MSC:

Bone marrow–mesenchymal stem cells

DNA:

Deoxyribose nucleic acid

HFB4 cells:

Human fibroblast cell lines

AT-MSCs:

Adipose tissue–derived mesenchymal stem cells

hFOB cells:

Human osteoblastic cells

MC3T3 cell lines:

Osteoblast precursor cells

MG-63 cell lines:

Human osteosarcoma cells

WI-38 cells:

Human lung fibroblast cells

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mhanna R, Hasan A. Introduction to tissue engineering, Tissue engineering for artificial organs: regenerative medicine, smart diagnostics and personalized medicine. Hasan A, editor. Wiley-VCH Verlag GmbH & Co. KGaA. 2017. pp.1–34. https://doi.org/10.1002/9783527689934.ch1.

  2. Pandey AR, Singh US, Momin M, Bhavsar C. Chitosan: application in tissue engineering and skin grafting. J Polym Res. 2017;24(8):1–22. https://doi.org/10.1007/s10965-017-1286-4.

    Article  CAS  Google Scholar 

  3. Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HE. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine. 2018;13:5637–55. https://doi.org/10.2147/IJN.S153758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials. 2019;12(11):1824. https://doi.org/10.3390/ma12111824.

    Article  CAS  PubMed Central  Google Scholar 

  5. Girigoswami K, Akhtar N. Nanobiosensors and fluorescence based biosensors: an overview. Int Nano Dimens. 2019;10(1):1–17. http://www.ijnd.ir/article_660965.html

  6. Metkar SK, Girigoswami K. Diagnostic biosensors in medicine- a review. Biocatal Agric Biotechnol. 2019;17:271–83. https://doi.org/10.1016/j.bcab.2018.11.029.

    Article  Google Scholar 

  7. Thendral V, Dharshni T, Ramalakshmi M, Girigoswami A, Girigoswami K. Cerium oxide nanocluster based nanobiosensor for ROS detection. Biocatal Agric Biotechnol. 2019;19: 101124. https://doi.org/10.1016/j.bcab.2019.101124.

    Article  Google Scholar 

  8. Akhtar N, Metkar SK, Girigoswami A, Girigoswami K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater Sci Eng C. 2017;78:960–8. https://doi.org/10.1016/j.msec.2017.04.118.

    Article  CAS  Google Scholar 

  9. Girigoswami K, Girigoswami A. A review on role of nanosensors in detecting cellular miRNA expression in colorectal cancer. Endocr Metab Immune Disord Drug Targets. 2021;21(1):12–26. https://doi.org/10.2174/1871530320666200515115723.

    Article  CAS  PubMed  Google Scholar 

  10. Deepika R, Girigoswami K, Murugesan R, Girigoswami A. Influence of divalent cation on morphology and drug delivery efficiency of mixed polymer nanoparticles. Curr drug deliv. 2018;15(5):652–7. https://doi.org/10.2174/1567201814666170825160617.

    Article  CAS  PubMed  Google Scholar 

  11. Girigoswami A, Yassine W, Sharmiladevi P, Haribabu V, Girigoswami K. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Sci reports. 2018;8(1):1–7. https://doi.org/10.1038/s41598-018-34843-4.

    Article  CAS  Google Scholar 

  12. Sharmiladevi P, Akhtar N, Haribabu V, Girigoswami K, Chattopadhyay S, Girigoswami A. Excitation wavelength independent carbon decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Appl Biomater. 2019;2(4):1634–42. https://doi.org/10.1021/acsabm.9b00039.

    Article  CAS  Google Scholar 

  13. Ghosh S, Girigoswami K, Girigoswami A. Membrane-encapsulated camouflaged nanomedicines in drug delivery. Nanomedicine. 2019;14(15):2067–82. https://doi.org/10.2217/nnm-2019-0155.

    Article  CAS  PubMed  Google Scholar 

  14. Sharmiladevi P, Breghatha M, Dhanavardhini K, Priya R, Girigoswami K, Girigoswami A. Efficient wormlike micelles for the controlled delivery of anticancer drugs. Nanosci Nanotechnol Asia. 2021;11(3):350–6. https://doi.org/10.2174/2210681210999200728115601.

    Article  CAS  Google Scholar 

  15. Sharmiladevi P, Girigoswami K, Haribabu V, Girigoswami A. Nano-enabled theranostics for cancer. Materials. Advances. 2021;2:2876–91. https://doi.org/10.1039/D1MA00069A.

    Article  CAS  Google Scholar 

  16. Haribabu V, Girigoswami K, Sharmiladevi P, Girigoswami A. Water-nanomaterials interaction to escalate twin-mode magnetic resonance imaging. ACS Biomater Sci Eng. 2020;6(8):4377–89. https://doi.org/10.1021/acsbiomaterials.0c00409.

    Article  CAS  PubMed  Google Scholar 

  17. Haribabu V, Sharmiladevi P, Akhtar N, Farook AS, Girigoswami K, Girigoswami A. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Curr Drug Deliv. 2019;16(3):233–41. https://doi.org/10.2174/1567201816666181119112410.

    Article  CAS  PubMed  Google Scholar 

  18. Sharmiladevi P, Haribabu V, Girigoswami K, Farook AS, Girigoswami A. Effect of mesoporous nano water reservoir on MR relaxivity. Sci reports. 2017;7(1):1–7. https://doi.org/10.1038/s41598-017-11710-2.

    Article  CAS  Google Scholar 

  19. Pallavi P, Sharmiladevi P, Haribabu V, Girigoswami K, Girigoswami A. A nano approach to formulate photosensitizers for photodynamic therapy. Curr Nanosci. 2022;18:1. https://doi.org/10.2174/1573413718666211222162041.

    Article  Google Scholar 

  20. Agraharam G, Girigoswami A, Girigoswami K. Nanoencapsulated myricetin to improve antioxidant activity and bioavailability: a study on zebrafish embryos. Chemistry. 2022;4:1–17. https://doi.org/10.3390/chemistry4010001.

    Article  CAS  Google Scholar 

  21. De S, Gopikrishna A, Keerthana V, Girigoswami A, Girigoswami K. An overview of nanoformulated nutraceuticals and their therapeutic approaches. Curr Nutr Food Sci. 2021;17(4):392–407. https://doi.org/10.2174/1573401316999200901120458.

    Article  CAS  Google Scholar 

  22. •Girigoswami K, Srinivasan N, Girigoswami A. Fate of stem cells grown on the extracellular matrix isolated from cancer cells and their possible applications in tissue engineering. Curr Sci. 2021a;120(10): 1616–1622. This paper discusses about the stem cell fate when grown above the extracellular matrix isolated from different types of cancer cells.

  23. •Girigoswami K, Saini D, Girigoswami A. Extracellular matrix remodeling and development of cancer. Stem Cell Rev. 2021b;17(3):739–747. https://doi.org/10.1007/s12015-020-10070-1. This paper discusses about the extraceelular matrix remodeling and its role in cancer.

  24. Zhao P, Gu H, Mi H, Rao C, Fu J, Turng LS. Fabrication of scaffolds in tissue engineering: a review. Front Mech Eng. 2018;13(1):107–19. https://doi.org/10.1007/s11465-018-0496-8.

    Article  Google Scholar 

  25. Wahid F, Khan T, Hussain Z, Ullah H. 30 - Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. Applications of Nanocomposite Materials in Drug Deliver. 2018;701–735. https://doi.org/10.1016/B978-0-12-813741-3.00031-5

  26. Reignier J, Huneault MA. Preparation of interconnected poly (ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer. 2006;47(13):4703–17. https://doi.org/10.1016/j.polymer.2006.04.029.

    Article  CAS  Google Scholar 

  27. Akbarzadeh R, Yousefi AM. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res Part B Appl Biomater. 2014;102(6):1304–15. https://doi.org/10.1002/jbm.b.33101.

    Article  CAS  Google Scholar 

  28. • Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed. 2007;46(30):5670–703. https://doi.org/10.1002/anie.200604646. (This article explained basic concepts of electrospinning method.)

    Article  CAS  Google Scholar 

  29. Jun I, Han HS, Edwards JR, Jeon H. Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci. 2018;19(3):745. https://doi.org/10.3390/ijms19030745.

    Article  CAS  PubMed Central  Google Scholar 

  30. Huang A, Peng X, Geng L, Zhang L, Huang K, Chen B, Gu Z, Kuang T. Electrospun poly (butylene succinate)/cellulose nanocrystals bio-nanocomposite scaffolds for tissue engineering: Preparation, characterization and in vitro evaluation. Polym Test. 2018;71:101–9. https://doi.org/10.1016/j.polymertesting.2018.08.027.

    Article  CAS  Google Scholar 

  31. Jin G, He R, Sha B, Li W, Qing H, Teng R, Xu F. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;92:995–1005. https://doi.org/10.1016/j.msec.2018.06.065.

    Article  CAS  PubMed  Google Scholar 

  32. Janmohammadi M, Nourbakhsh MS. Electrospun polycaprolactone scaffolds for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2019;68(9):527–39. https://doi.org/10.1080/00914037.2018.1466139.

    Article  CAS  Google Scholar 

  33. Nazeer MA, Yilgor E, Yilgor I. Electrospun polycaprolactone/silk fibroin nanofibrous bioactive scaffolds for tissue engineering applications. Polymer. 2019;168:86–94. https://doi.org/10.1016/j.polymer.2019.02.023.

    Article  CAS  Google Scholar 

  34. Teixeira MA, Amorim MTP, Felgueiras HP. Poly(vinyl alcohol)-based nanofibrous electrospun scaffolds for tissue engineering applications. Polymers (Basel). 2019;12(1):7. https://doi.org/10.3390/polym12010007.

    Article  CAS  Google Scholar 

  35. Pugliese R, Maleki M, Zuckermann RN, Gelain F. Self-assembling peptides cross-linked with genipin: resilient hydrogels and self-standing electrospun scaffolds for tissue engineering applications. Biomater sci. 2019;7(1):76–91. https://doi.org/10.1039/C8BM00825F

  36. Tan GZ, Zhou Y. Electrospinning of biomimetic fibrous scaffolds for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2020;69(15):947–60. https://doi.org/10.1080/00914037.2019.1636248.

    Article  CAS  Google Scholar 

  37. ••Parham S, Kharazi AZ, Bakhsheshi-Rad HR, Ghayour H, Ismail AF, Nur H, Berto F. Electrospun nano-fibers for biomedical and tissue engineering applications: a comprehensive review. Materials. 2020;13(9):2153. https://doi.org/10.3390/ma13092153. This article reviewed multiple parameters for different types of materials/polymers for the formation of scaffolds by using electrospinning method.

  38. Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. Prog Mater Sci. 2021;117: 100721. https://doi.org/10.1016/j.pmatsci.2020.100721.

    Article  CAS  Google Scholar 

  39. Zhang S, Xing M, Li B. Biomimetic layer-by-layer self-assembly of nanofilms, nanocoatings, and 3D scaffolds for tissue engineering. Int J Mol Sci. 2018;19(6):1641. https://doi.org/10.3390/ijms19061641.

    Article  CAS  PubMed Central  Google Scholar 

  40. Datta P, Vyas V, Dhara S, Chowdhury AR, Barui A. Anisotropy properties of tissues: a basis for fabrication of biomimetic anisotropic scaffolds for tissue engineering. J Bionic Eng. 2019;16(5):842–68. https://doi.org/10.1007/s42235-019-0101-9.

    Article  Google Scholar 

  41. Hasan A, Waibhaw G, Saxena V, Pandey LM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol. 2018;111:923–34. https://doi.org/10.1016/j.ijbiomac.2018.01.089.

    Article  CAS  PubMed  Google Scholar 

  42. Wanjale SD, Jog JP. Crystallization and phase transformation kinetics of poly (1-butene)/MWCNT nanocomposites. Polymer. 2006;47(18):6414–21. https://doi.org/10.1016/j.polymer.2006.07.011.

    Article  CAS  Google Scholar 

  43. El Fray M, Boccaccini AR. Novel hybrid PET/DFA–TiO2 nanocomposites by in situ polycondensation. Mater Lett. 2005;59(18):2300–4. https://doi.org/10.1016/j.matlet.2005.03.008.

    Article  CAS  Google Scholar 

  44. Liu A, Hong Z, Zhuang X, Chen X, Cui Y, Liu Y, Jing X. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly (L-lactide) composites. Acta Biomater. 2008;4(4):1005–15. https://doi.org/10.1016/j.actbio.2008.02.013.

    Article  CAS  PubMed  Google Scholar 

  45. Jawad H, Boccaccini AR, Ali NN, Harding SE. Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications. Nanotoxicology. 2011;5(3):372–80. https://doi.org/10.3109/17435390.2010.516844.

    Article  CAS  PubMed  Google Scholar 

  46. Lim D, Lee E, Kim H, Park S, Baek S, Yoon J. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices. Soft Matter. 2015;11(8):1606–13. https://doi.org/10.1039/c4sm02564d.

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh S, Webster TJ. Metallic Nanoscaffolds as osteogenic promoters: advances, challenges and scope. Metals. 2021;11(9):1356. https://doi.org/10.3390/met11091356.

    Article  CAS  Google Scholar 

  48. Shevach M, Fleischer S, Shapira A, Dvir T. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering. Nano Lett. 2014;14(10):5792–6. https://doi.org/10.1021/nl502673m.

    Article  CAS  PubMed  Google Scholar 

  49. Shevach M, Maoz BM, Feiner R, Shapira A, Dvir T. Nanoengineering gold particle composite fibers for cardiac tissue engineering. J Mater Chem B. 2013;1(39):5210–7. https://doi.org/10.1039/c3tb20584c.

    Article  CAS  PubMed  Google Scholar 

  50. Navaei A, Saini H, Christenson W, Sullivan RT, Ros R, Nikkhah M. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater. 2016;41:133–46. https://doi.org/10.1016/j.actbio.2016.05.027.

    Article  CAS  PubMed  Google Scholar 

  51. Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M. Nano-enabled approaches for stem cell-based cardiac tissue engineering. Adv Healthc Mater. 2016;5(13):1533–53. https://doi.org/10.1002/adhm.201600088.

    Article  CAS  PubMed  Google Scholar 

  52. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA. Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl. 2010;49(19):3280–94. https://doi.org/10.1002/anie.200904359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012;41(6):2256–82. https://doi.org/10.1039/c1cs15166e.

    Article  CAS  PubMed  Google Scholar 

  54. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38(6):1759–82. https://doi.org/10.1039/b806051g.

    Article  CAS  PubMed  Google Scholar 

  55. Chen Y, Li N, Yang Y, Liu Y. A dual targeting cyclodextrin/gold nanoparticle conjugate as a scaffold for solubilization and delivery of paclitaxel. RSC Adv. 2015;5(12):8938–41. https://doi.org/10.1039/C4RA13135E.

    Article  CAS  Google Scholar 

  56. Ko WK, Heo DN, Moon HJ, Lee SJ, Bae MS, Lee JB, Sun IC, Jeon HB, Park HK, Kwon IK. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J Colloid Interface Sci. 2015;438:68–76. https://doi.org/10.1016/j.jcis.2014.08.058.

    Article  CAS  PubMed  Google Scholar 

  57. Suh KS, Lee YS, Seo SH, Kim YS, Choi EM. Gold nanoparticles attenuates antimycin A-induced mitochondrial dysfunction in MC3T3-E1 osteoblastic cells. Biol Trace Elem Res. 2013;153(1):428–36. https://doi.org/10.1007/s12011-013-9679-7.

    Article  CAS  PubMed  Google Scholar 

  58. Motola M, Capek J, Zazpe R, Bacova J, Hromadko L, Bruckova L, Ng S, Handl J, Spotz Z, Knotek P, Baishya K. Thin TiO2 coatings by ALD enhance the cell growth on TiO2 nanotubular and flat substrates. ACS Appl Bio Mater. 2020;3(9):6447–56. https://doi.org/10.1021/acsabm.0c00871.

    Article  CAS  PubMed  Google Scholar 

  59. MacNeil S. Biomaterials for tissue engineering of skin. Mater Today. 2008;11(5):26–35. https://doi.org/10.1016/S1369-7021(08)70087-7.

    Article  CAS  Google Scholar 

  60. Singla R, Abidi SM, Dar AI, Acharya A. Nanomaterials as potential and versatile platform for next generation tissue engineering applications. J Biomed Mater Res Part B Appl Biomater. 2019;107(7):2433–49. https://doi.org/10.1002/jbm.b.34327.

    Article  CAS  Google Scholar 

  61. Sharif S, Ai J, Azami M, Verdi J, Atlasi MA, Shirian S, Samadikuchaksaraei A. Collagen-coated nano-electrospun PCL seeded with human endometrial stem cells for skin tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2018;106:1578–86. https://doi.org/10.1002/jbm.b.33966.

    Article  CAS  PubMed  Google Scholar 

  62. Tocco I, Zavan B, Bassetto F, Vindigni V. Nanotechnology-based therapies for skin wound regeneration. J Nanomater. 2012;4:1–11. https://doi.org/10.1155/2012/714134.

    Article  CAS  Google Scholar 

  63. Kaler A, Mittal AK, Katariya M, Harde H, Agrawal AK, Jain S, Banerjee UC. An investigation of in vivo wound healing activity of biologically synthesized silver nanoparticles. J Nanopart Res. 2014;16:2605–14. https://doi.org/10.1007/s11051-014-2605-x.

    Article  CAS  Google Scholar 

  64. Rigo C, Ferroni L, Tocco I, Roman M, Munivrana I, Gardin C, Zavan B. Active silver nanoparticles for wound healing. Int J Mol Sci. 2013;14:4817–40. https://doi.org/10.3390/ijms14034817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu J, Sonshine DA, Shervani S, Hurt RH. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano. 2010;4:6903–13. https://doi.org/10.1021/nn102272n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Oyarzun-Ampuero F, Vidal A, Concha M, Morales J, Orellana S, Moreno VI. Nanoparticles for the treatment of wounds. Curr Pharm Des. 2015;21:4329–41. https://doi.org/10.2174/1381612821666150901104601.

    Article  CAS  PubMed  Google Scholar 

  67. Shi S, Jiang W, Zhao T, Aifantis KE, Wang H, Lin L, Fan Y, Feng Q, Cui FZ, Li X. The application of nanomaterials in controlled drug delivery for bone regeneration. J Biomed Mater Res A. 2015;103:3978–92. https://doi.org/10.1016/j.nano.2015.04.005.

    Article  CAS  PubMed  Google Scholar 

  68. Hasani-Sadrabadi MM, Hajrezaei SP, Emami SH, Bahlakeh G, Daneshmandi L, Dashtimoghadam E, Tayebi L. Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine: Nanotechnology Biology Medicine. 2015;11:1809 1819. https://doi.org/10.1016/j.nano.2015.04.005

  69. Gentile P, Nandagiri VK, Pabari R, Daly J, Tonda-Turo C, Ciardelli G, Ramtoola Z. Influence of parathyroid hormone-loaded PLGA nanoparticles in porous scaffolds for bone regeneration. Int J Mol Sci. 2015;16:20492–510. https://doi.org/10.3390/ijms160920492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cao L, Werkmeister JA, Wang J, Glattauer V, McLean KM, Liu C. Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials. 2014;35:2730–42. https://doi.org/10.1016/j.biomaterials.2013.12.028.

    Article  CAS  PubMed  Google Scholar 

  71. Venkatesan J, Pallela R, Kim SK. Applications of carbon nanomaterials in bone tissue engineering. J Biomed Nanotechnol. 2014;10:3105–23. https://doi.org/10.1166/jbn.2014.1969.

    Article  CAS  PubMed  Google Scholar 

  72. Chen W, Tsai PH, Hung Y, Chiou SH, Mou CY. Nonviral cell labelling and differentiation agent for induced pluripotent stem cells based on mesoporous silica nanoparticles. ACS Nano. 2013;7:8423–40. https://doi.org/10.1021/nn401418n.

    Article  CAS  PubMed  Google Scholar 

  73. Amin KA, Hashem KS, Alshehri FS, Awad ST, Hassan MS. Antioxidant and hepatoprotective efficiency of selenium nanoparticles against acetaminophen-induced hepatic damage. Biol Trace Elem Res. 2017;175:136–45. https://doi.org/10.1007/s12011-016-0748-6.

    Article  CAS  PubMed  Google Scholar 

  74. Pulavendran S, Rose C, Mandal AB. Hepatocyte growth factor incorporated chitosan nanoparticles augment the differentiation of stem cell into hepatocytes for the recovery of liver cirrhosis in mice. J Nanobiotechnol. 2011;9:15–25. https://doi.org/10.1186/1477-3155-9-15.

    Article  CAS  Google Scholar 

  75. Hashemi SM, Soleimani M, Zargarian SS, Haddadi-Asl SV, Ahmadbeigi N, Soudi S, Mohammadi Y. In vitro differentiation of human cord blood-derived unrestricted somatic stem cells into hepatocyte-like cells on poly (ε-caprolactone) nanofiber scaffolds. Cells Tissues Organs. 2008;190:135–49. https://doi.org/10.1159/000187716.

    Article  CAS  PubMed  Google Scholar 

  76. Chen Z, Chang R, Guan W, Cai H, Tang F, Zhu W, Chen J. Transplantation of porcine hepatocytes cultured with polylactic acid-o-carboxymethylated chitosan nanoparticles promotes liver regeneration in acute liver failure rats. J Drug Deliv. 2011;2011:1–7. https://doi.org/10.1155/2011/797503.

    Article  Google Scholar 

  77. Cui W, Zhou Y, Chang J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater. 2016;11(014108): 014119. https://doi.org/10.1088/1468-6996/11/1/014108.

    Article  CAS  Google Scholar 

  78. Agheb M, Dinari M, Rafienia M, Salehi H. Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering. Mater Sci Eng C. 2017;71:240–51. https://doi.org/10.1016/j.msec.2016.10.003.

    Article  CAS  Google Scholar 

  79. Naseri N, Poirier JM, Girandon L, Frohlich M, Oksman K, Mathew AP. 3-dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv. 2016;6:5999–6007. https://doi.org/10.1039/C5RA27246G.

    Article  CAS  Google Scholar 

  80. Zheng X, Wang W, Liu S, Wu J, Li F, Cao L, Fan C. Enhancement of chondrogenic differentiation of rabbit mesenchymal stem cells by oriented nanofiber yarn-collagen type I/hyaluronate hybrid. Mater Sci Eng C. 2016;58:1071–6. https://doi.org/10.1016/j.msec.2015.07.066.

    Article  CAS  Google Scholar 

  81. Holmes B, Castro NJ, Li J, Keidar M, Zhang LG. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Nanotechnology. 2013;24:365102–12. https://doi.org/10.1088/0957-4484/24/36/365102.

    Article  CAS  PubMed  Google Scholar 

  82. Kumar S, Chatterjee K. Comprehensive review on the use of graphene-based substrates for regenerative medicine and biomedical devices. ACS Appl Mater Interfaces. 2016;8:26431–57. https://doi.org/10.1021/acsami.6b09801.

    Article  CAS  PubMed  Google Scholar 

  83. Shalumon KT, Deepthi S, Anupama MS, Nair SV, Jayakumar R, Chennazhi KP. Fabrication of poly(l-lactic acid)/gelatin composite tubular scaffolds for vascular tissue engineering. Int J Biol Macromol. 2015;72:1048–55. https://doi.org/10.1016/j.ijbiomac.2014.09.058.

    Article  CAS  PubMed  Google Scholar 

  84. Fu W, Liu Z, Feng B, Hu R, He X, Wang H, Wang W. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int J Nanomed. 2014;9:2335–44. https://doi.org/10.2147/IJN.S61375.

    Article  Google Scholar 

  85. Miller DC, Haberstroh KM, Webster TJ. PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. J Biomed Mater Res A. 2007;81:678–84. https://doi.org/10.1002/jbm.a.31093.

    Article  CAS  PubMed  Google Scholar 

  86. Ostdiek AM, Ivey JR, Grant DA, Gopaldas J, Grant SA. An in vivo study of a gold nanocomposite biomaterial for vascular repair. Biomaterials. 2015;65:175–83. https://doi.org/10.1016/j.biomaterials.2015.06.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rahimnejad M, Nasrollahi Boroujeni N, Jahangiri S, Rabiee N, Rabiee M, Makvandi P, Akhavan O, Varma RS. Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering. Nanomicro Lett. 2021;13(1):1–24. https://doi.org/10.1007/s40820-021-00697-1.

    Article  CAS  Google Scholar 

  88. Nguyen AH, Marsh P, Schmiess-Heine L, Burke PJ, Lee A, Lee J, Cao H. Cardiac tissue engineering: state-of-the-art methods and outlook. J Biol Eng. 2019;13:57. https://doi.org/10.1186/s13036-019-0185-0.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, Roy I. Natural biomaterials for cardiac tissue engineering: a highly biocompatible solution. Front Cardiovasc Med. 2020;7: 554597. https://doi.org/10.3389/fcvm.2020.554597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, materials, and fabrication processes for cardiac tissue engineering. Front Bioeng Biotechnol. 2020;8:955. https://doi.org/10.3389/fbioe.2020.00955.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Radhakrishnan S, Nagarajan S, Belaid H, Farha C, Iatsunskyi I, Coy E, Soussan L, Huon V, Bares J, Belkacemi K, Teyssier C. Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications. Mater Sci Eng C. 2021;118: 111525. https://doi.org/10.1016/j.msec.2020.111525.

    Article  CAS  Google Scholar 

  92. Dhand C, Balakrishnan Y, Ong ST, Dwivedi N, Venugopal JR, Harini S, Leung CM, Low KZW, Loh XJ, Beuerman RW, Ramakrishna S, Verma NK, Lakshminarayanan R. Antimicrobial quaternary ammonium organosilane cross-linked nanofibrous collagen scaffolds for tissue engineering. Int J Nanomedicine. 2018;13:4473–92. https://doi.org/10.2147/IJN.S159770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. De Silva RT, Dissanayake RK, Mantilaka MP, Wijesinghe WS, Kaleel SS, Premachandra TN, Weerasinghe L, Amaratunga GA, de Silva KN. Drug-loaded halloysite nanotube-reinforced electrospun alginate-based nanofibrous scaffolds with sustained antimicrobial protection. ACS Appl Mater Interfaces. 2018;10(40):33913–22. https://doi.org/10.1021/acsami.8b11013.

    Article  CAS  PubMed  Google Scholar 

  94. Mondal S, Hoang G, Manivasagan P, Moorthy MS, Nguyen TP, Phan TT, Kim HH, Kim MH, Nam SY, Oh J. Nano-hydroxyapatite bioactive glass composite scaffold with enhanced mechanical and biological performance for tissue engineering application. Ceram Int. 2018;44(13):15735–46. https://doi.org/10.1016/j.ceramint.2018.05.248.

    Article  CAS  Google Scholar 

  95. Mondal S, Nguyen TP, Hoang G, Manivasagan P, Kim MH, Nam SY, Oh J. Hydroxyapatite nano bioceramics optimized 3D printed poly lactic acid scaffold for bone tissue engineering application. Ceram Int. 2020;46(3):3443–55. https://doi.org/10.1016/j.ceramint.2019.10.057.

    Article  CAS  Google Scholar 

  96. Ahmed MK, Ramadan R, El-Dek SI, Uskoković V. Complex relationship between alumina and selenium-doped carbonated hydroxyapatite as the ceramic additives to electrospun polycaprolactone scaffolds for tissue engineering applications. J Alloys Compd. 2019;801:70–81. https://doi.org/10.1016/j.jallcom.2019.06.013.

    Article  CAS  Google Scholar 

  97. Funda G, Taschieri S, Bruno GA, Grecchi E, Paolo S, Girolamo D, Del Fabbro M. Nanotechnology scaffolds for alveolar bone regeneration. Materials (Basel). 2020;13(1):201. https://doi.org/10.3390/ma13010201.

    Article  CAS  Google Scholar 

  98. ••Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res. 2019;18:185–201. https://doi.org/10.1016/j.jare.2019.03.011. This article reviewed various carbon-based materials that could be useful in the development of nanoscaffolds for tissue engineering.

  99. •Ma H, Feng C, Chang J, Wu C. 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta biomater. 2018;79:37–59. https://doi.org/10.1016/j.actbio.2018.08.026. This article demonstrated different types of material and doping elements that provide more advantages for the bone tissue engineering.

  100. Biswal T. Biopolymers for tissue engineering applications: a review. Materials Today: Proceedings. 2021;41:397–402. https://doi.org/10.1016/j.matpr.2020.09.628.

    Article  CAS  Google Scholar 

  101. Aadil KR, Nathani A, Sharma CS, Lenka N, Gupta P. Investigation of poly (vinyl) alcohol-gellan gum based nanofiber as scaffolds for tissue engineering applications. J Drug Deliv Sci Technol. 2019;54:101276.

    Article  CAS  Google Scholar 

  102. Bakhshayesh ARD, Mostafavi E, Alizadeh E, Asadi N, Akbarzadeh A, Davaran S. Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS Omega. 2018;3(8):8605–11.

    Article  Google Scholar 

  103. Mohandesnezhad S, Pilehvar-Soltanahmadi Y, Alizadeh E, Goodarzi A, Davaran S, Khatamian M, Zarghami N, Samiei M, Aghazadeh M, Akbarzadeh A. In vitro evaluation of Zeolite-nHA blended PCL/PLA nanofibers for dental tissue engineering. Mater Chem Phys. 2020;252:123152.

    Article  CAS  Google Scholar 

  104. Maji S, Agarwal T, Das J, Maiti TK. Development of gelatin/carboxymethyl chitosan/nano-hydroxyapatite composite 3D macroporous scaffold for bone tissue engineering applications. Carbohydr Polym. 2018;189:115–25. https://doi.org/10.1016/j.carbpol.2018.01.104.

    Article  CAS  PubMed  Google Scholar 

  105. Saini RK, Bagri LP, Bajpai AK. Nanosilver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloids Surf B Biointerfaces. 2019;1:211–8. https://doi.org/10.1016/j.colsurfb.2019.01.064.

    Article  CAS  Google Scholar 

  106. Christy PN, Basha SK, Kumari VS, Bashir AK, Maaza M, Kaviyarasu K, Arasu MV, Al-Dhabi NA, Ignacimuthu S. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications–a review. J Drug Deliv Sci Technol. 2020;55: 101452. https://doi.org/10.1016/j.jddst.2019.101452.

    Article  CAS  Google Scholar 

  107. Iravani S, Varma RS. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019;21(18):4839–67. https://doi.org/10.1039/C9GC02391G.

    Article  CAS  Google Scholar 

  108. Ebhodaghe SO. Natural polymeric scaffolds for tissue engineering applications. J Biomater Sci Polym Ed. 2021;32(16):2144–94. https://doi.org/10.1080/09205063.2021.1958185.

    Article  CAS  PubMed  Google Scholar 

  109. Ferreira FV, Otoni CG, Kevin J, Barud HS, Lona LM, Cranston ED, Rojas OJ. Porous nanocellulose gels and foams: breakthrough status in the development of scaffolds for tissue engineering. Mater Today. 2020;37:126–41. https://doi.org/10.1016/j.mattod.2020.03.003.

    Article  CAS  Google Scholar 

  110. Khalil HP, Jummaat F, Yahya EB, Olaiya NG, Adnan AS, Abdat M, NAM N, Halim AS, Kumar U, Bairwan R, Suriani AB. A review on micro-to nanocellulose biopolymer scaffold forming for tissue engineering applications. Polymers. 2020;12(9):2043. https://doi.org/10.3390/polym12092043

  111. Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol. 2018;60(7):506–32. https://doi.org/10.1007/s12033-018-0084-5.

    Article  CAS  PubMed  Google Scholar 

  112. Bakhtiari SS, Karbasi S, Toloue EB. Modified poly (3-hydroxybutyrate)-based scaffolds in tissue engineering applications: a review. Int J Biol Macromol. 2021;1(166):986–98. https://doi.org/10.1016/j.ijbiomac.2020.10.255.

    Article  CAS  Google Scholar 

  113. Ahmed S, Ali A, Sheikh J. A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol. 2018;116:849–62. https://doi.org/10.1016/j.ijbiomac.2018.04.176.

    Article  CAS  PubMed  Google Scholar 

  114. Pandit AH, Mazumdar N, Ahmad S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int J Biol Macromol. 2019;137:853–69. https://doi.org/10.1016/j.ijbiomac.2019.07.014.

    Article  CAS  PubMed  Google Scholar 

  115. Bai RG, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine. 2019;14:5753–83. https://doi.org/10.2147/IJN.S192779.

    Article  CAS  Google Scholar 

  116. Shadjou N, Hasanzadeh M, Khalilzadeh B. Graphene based scaffolds on bone tissue engineering. Bioengineered. 2018;9(1):38–47. https://doi.org/10.1080/21655979.2017.1373539.

    Article  CAS  PubMed  Google Scholar 

  117. Bei HP, Yang Y, Zhang Q, Tian Y, Luo X, Yang M, Zhao X. Graphene-based nanocomposites for neural tissue engineering. Molecules. 2019;24(4):658. https://doi.org/10.3390/molecules24040658.

    Article  CAS  PubMed Central  Google Scholar 

  118. ••Nalvuran H, Elçin AE, Elçin YM. Nanofibrous silk fibroin/reduced graphene oxide scaffolds for tissue engineering and cell culture applications. Int J Biol Macromol. 2018;114:77–84. https://doi.org/10.1016/j.ijbiomac.2018.03.072. This research article demonstrated the nanoscaffolds formed by reduced graphene oxide and silk fibroin and its properties against bone marrow–mesenchymal stem cells.

Download references

Acknowledgements

The authors are grateful to Chettinad Academy of Research and Education for supporting GA and DB with Junior Research Fellowship. We also offer sincere thanks to the Council of Scientific and Industrial Research (CSIR), India, for the grant with Scheme No. 01(2868)/17/EMR-II.

Funding

The research was supported by the Council of Scientific and Industrial Research (CSIR) India, Scheme No. 01(2868)/17/EMR-II. GA and DB were supported by Junior Research Fellowship from Chettinad Academy of Research and Education.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed for concept designing, literature searching, and manuscript writing. KG and AG finalized the draft.

Corresponding author

Correspondence to Koyeli Girigoswami.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the authors have given the consent to publish.

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Naturopathy, Nanotechnology, Nutraceuticals, and Immunotherapy in Cancer Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepika, B., Gopikrishna, A., Girigoswami, A. et al. Applications of Nanoscaffolds in Tissue Engineering. Curr Pharmacol Rep 8, 171–187 (2022). https://doi.org/10.1007/s40495-022-00284-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-022-00284-x

Keywords

Navigation